Moments Monodromy

,

Wysyłka: Niedostępna
Sugerowana cena detaliczna 209,00 PLN
Nasza cena: 198,96 PLN
Oszczędzasz 4%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Paypo
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Moments Monodromy - Nicholas M. Katz, N Katz

It is now some thirty years since Deligne first proved his general equidistribution theorem, thus establishing the fundamental result governing the statistical properties of suitably "pure" algebro-geometric families of character sums over finite fields (and of their associated L-functions). Roughly speaking, Deligne showed that any such family obeys a "generalized Sato-Tate law," and that figuring out which generalized Sato-Tate law applies to a given family amounts essentially to computing a certain complex semisimple (not necessarily connected) algebraic group, the "geometric monodromy group" attached to that family. Up to now, nearly all techniques for determining geometric monodromy groups have relied, at least in part, on local information.In "Moments, Monodromy, and Perversity", Nicholas Katz develops new techniques, which are resolutely global in nature. They are based on two vital ingredients, neither of which existed at the time of Deligne's original work on the subject.The first is the theory of perverse sheaves, pioneered by Goresky and MacPherson in the topological setting and then brilliantly transposed to algebraic geometry by Beilinson, Bernstein, Deligne, and Gabber. The second is Larsen's Alternative, which very nearly characterizes classical groups by their fourth moments. These new techniques, which are of great interest in their own right, are first developed and then used to calculate the geometric monodromy groups attached to some quite specific universal families of (L-functions attached to) character sums over finite fields.Introduction 1 Chapter 1: Basic results on perversity and higher moments 9 Chapter 2: How to apply the results of Chapter 2 93 Chapter 3: Additive character sums on An 111 Chapter 4: Additive character sums on more general X 161 Chapter 5: Multiplicative character sums on An 185 Chapter 6: Middle addivitve convolution 221 Appendix A6: Swan-minimal poles 281 Chapter 7: Pullbacks to curves from A1 295 Chapter 8: One variable twists on curves 321 Chapter 9: Weierstrass sheaves as inputs 327 Chapter 10: Weirstrass families 349 Chapter 11: FJTwist families and variants 371 Chapter 12: Uniformity results 407 Chapter 13: Average analytic rank and large N limits 443 References 455 Notation Index 461 Subject Index 467


Szczegóły: Moments Monodromy - Nicholas M. Katz, N Katz

Tytuł: Moments Monodromy
Autor: Nicholas M. Katz, N Katz
Producent: Princeton University Press
ISBN: 9780691123301
Rok produkcji: 2005
Ilość stron: 448
Oprawa: Miękka
Waga: 0.83 kg


Recenzje: Moments Monodromy - Nicholas M. Katz, N Katz

Zaloguj się
Przypomnij hasło
×
×

Moments Monodromy

,

It is now some thirty years since Deligne first proved his general equidistribution theorem, thus establishing the fundamental result governing the statistical properties of suitably "pure" algebro-geometric families of character sums over finite fields (and of their associated L-functions). Roughly speaking, Deligne showed that any such family obeys a "generalized Sato-Tate law," and that figuring out which generalized Sato-Tate law applies to a given family amounts essentially to computing a certain complex semisimple (not necessarily connected) algebraic group, the "geometric monodromy group" attached to that family. Up to now, nearly all techniques for determining geometric monodromy groups have relied, at least in part, on local information.In "Moments, Monodromy, and Perversity", Nicholas Katz develops new techniques, which are resolutely global in nature. They are based on two vital ingredients, neither of which existed at the time of Deligne's original work on the subject.The first is the theory of perverse sheaves, pioneered by Goresky and MacPherson in the topological setting and then brilliantly transposed to algebraic geometry by Beilinson, Bernstein, Deligne, and Gabber. The second is Larsen's Alternative, which very nearly characterizes classical groups by their fourth moments. These new techniques, which are of great interest in their own right, are first developed and then used to calculate the geometric monodromy groups attached to some quite specific universal families of (L-functions attached to) character sums over finite fields.Introduction 1 Chapter 1: Basic results on perversity and higher moments 9 Chapter 2: How to apply the results of Chapter 2 93 Chapter 3: Additive character sums on An 111 Chapter 4: Additive character sums on more general X 161 Chapter 5: Multiplicative character sums on An 185 Chapter 6: Middle addivitve convolution 221 Appendix A6: Swan-minimal poles 281 Chapter 7: Pullbacks to curves from A1 295 Chapter 8: One variable twists on curves 321 Chapter 9: Weierstrass sheaves as inputs 327 Chapter 10: Weirstrass families 349 Chapter 11: FJTwist families and variants 371 Chapter 12: Uniformity results 407 Chapter 13: Average analytic rank and large N limits 443 References 455 Notation Index 461 Subject Index 467

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 209,00 PLN
Nasza cena 198,96 PLN
Oszczędzasz 4%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Paypo

Szczegóły: Moments Monodromy - Nicholas M. Katz, N Katz

Tytuł: Moments Monodromy
Autor: Nicholas M. Katz, N Katz
Producent: Princeton University Press
ISBN: 9780691123301
Rok produkcji: 2005
Ilość stron: 448
Oprawa: Miękka
Waga: 0.83 kg


Recenzje: Moments Monodromy - Nicholas M. Katz, N Katz

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×