Geometry and Topology of Coxeter Groups

,

Wysyłka: Niedostępna
Sugerowana cena detaliczna 388,50 PLN
Nasza cena: 366,60 PLN
Oszczędzasz 5%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Paypo
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Geometry and Topology of Coxeter Groups - Michael W. Davis, M Davis

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincar Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures. This book is one of those that grows with the reader: A graduate student can learn many properties, details and examples of Coxeter groups, while an expert can read about aspects of recent results in the theory of Coxeter groups and use the book as a guide to the literature. I strongly recommend this book to anybody who has any interest in geometric group theory. Anybody who reads (parts of) this book with an open mind will get a lot out of it. -- Ralf Gramlich Mathematical Reviews The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. L'Enseignement MathematiquePreface xiii Chapter 1: INTRODUCTION AND PREVIEW 1 1.1 Introduction 1 1.2 A Preview of the Right-Angled Case 9 Chapter 2: SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY 15 2.1 Cayley Graphs and Word Metrics 15 2.2 Cayley 2-Complexes 18 2.3 Background on Aspherical Spaces 21 Chapter 3: COXETER GROUPS 26 3.1 Dihedral Groups 26 3.2 Reflection Systems 30 3.3 Coxeter Systems 37 3.4 The Word Problem 40 3.5 Coxeter Diagrams 42 Chapter 4: MORE COMBINATORIAL THEORY OF COXETER GROUPS 44 4.1 Special Subgroups in Coxeter Groups 44 4.2 Reflections 46 4.3 The Shortest Element in a Special Coset 47 4.4 Another Characterization of Coxeter Groups 48 4.5 Convex Subsets of W 49 4.6 The Element of Longest Length 51 4.7 The Letters with Which a Reduced Expression Can End 53 4.8 A Lemma of Tits 55 4.9 Subgroups Generated by Reflections 57 4.10 Normalizers of Special Subgroups 59 Chapter 5: THE BASIC CONSTRUCTION 63 5.1 The Space U 63 5.2 The Case of a Pre-Coxeter System 66 5.3 Sectors in U 68 Chapter 6: GEOMETRIC REFLECTION GROUPS 72 6.1 Linear Reflections 73 6.2 Spaces of Constant Curvature 73 6.3 Polytopes with Nonobtuse Dihedral Angles 78 6.4 The Developing Map 81 6.5 Polygon Groups 85 6.6 Finite Linear Groups Generated by Reflections 87 6.7 Examples of Finite Reflection Groups 92 6.8 Geometric Simplices: The Gram Matrix and the Cosine Matrix 96 6.9 Simplicial Coxeter Groups: Lann?er's Theorem 102 6.10 Three-dimensional Hyperbolic Reflection Groups: Andreev's Theorem 103 6.11 Higher-dimensional Hyperbolic Reflection Groups: Vinberg's Theorem 110 6.12 The Canonical Representation 115 Chapter 7: THE COMPLEX 123 7.1 The Nerve of a Coxeter System 123 7.2 Geometric Realizations 126 7.3 A Cell Structure on 128 7.4 Examples 132 7.5 Fixed Posets and Fixed Subspaces 133 Chapter 8: THE ALGEBRAIC TOPOLOGY OF U AND OF 136 8.1 The Homology of U 137 8.2 Acyclicity Conditions 140 8.3 Cohomology with Compact Supports 146 8.4 The Case Where X Is a General Space 150 8.5 Cohomology with Group Ring Coefficients 152 8.6 Background on the Ends of a Group 157 8.7 The Ends of W 159 8.8 Splittings of Coxeter Groups 160 8.9 Cohomology of Normalizers of Spherical Special Subgroups 163 Chapter 9: THE FUNDAMENTAL GROUP AND THE FUNDAMENTAL GROUP AT INFINITY 166 9.1 The Fundamental Group of U 166 9.2 What Is Simply Connected at Infinity? 170 Chapter 10: ACTIONS ON MANIFOLDS 176 10.1 Reflection Groups on Manifolds 177 10.2 The Tangent Bundle 183 10.3 Background on Contractible Manifolds 185 10.4 Background on Homology Manifolds 191 10.5 Aspherical Manifolds Not Covered by Euclidean Space 195 10.6 When Is a Manifold? 197 10.7 Reflection Groups on Homology Manifolds 197 10.8 Generalized Homology Spheres and Polytopes 201 10.9 Virtual Poincar?e Duality Groups 205 Chapter 11: THE REFLECTION GROUP TRICK 212 11.1 The First Version of the Trick 212 11.2 Examples of Fundamental Groups of Closed Aspherical Manifolds 215 11.3 Nonsmoothable Aspherical Manifolds 216 11.4 The Borel Conjecture and the PDn-Group Conjecture 217 11.5 The Second Version of the Trick 220 11.6 The Bestvina-Brady Examples 222 11.7 The Equivariant Reflection Group Trick 225 Chapter 12: IS CAT(0): THEOREMS OF GROMOV AND ZMOUSSONG 230 12.1 A Piecewise Euclidean Cell Structure on 231 12.2 The Right-Angled Case 233 12.3 The General Case 234 12.4 The Visual Boundary of 237 12.5 Background on Word Hyperbolic Groups 238 12.6 When Is CAT(-1)? 241 12.7 Free Abelian Subgroups of Coxeter Groups 245 12.8 Relative Hyperbolization 247 Chapter 13: RIGIDITY 255 13.1 Definitions, Examples, Counterexamples 255 13.2 Spherical Parabolic Subgroups and Their Fixed Subspaces 260 13.3 Coxeter Groups of Type PM 263 13.4 Strong Rigidity for Groups of Type PM 268 Chapter 14: FREE QUOTIENTS AND SURFACE SUBGROUPS 276 14.1 Largeness 276 14.2 Surface Subgroups 282 Chapter 15: ANOTHER LOOK AT (CO)HOMOLOGY 286 15.1 Cohomology with Constant Coefficients 286 15.2 Decompositions of Coefficient Systems 288 15.3 The W-Module Structure on (Co)homology 295 15.4 The Case Where W Is finite 303 Chapter 16: THE EULER CHARACTERISTIC 306 16.1 Background on Euler Characteristics 306 16.2 The Euler Characteristic Conjecture 310 16.3 The Flag Complex Conjecture 313 Chapter 17: GROWTH SERIES 315 17.1 Rationality of the Growth Series 315 17.2 Exponential versus Polynomial Growth 322 17.3 Reciprocity 324 17.4 Relationship with the h-Polynomial 325 Chapter 18: BUILDINGS 328 18.1 The Combinatorial Theory of Buildings 328 18.2 The Geometric Realization of a Building 336 18.3 Buildings Are CAT(0) 338 18.4 Euler-Poincar?e Measure 341 Chapter 19: HECKE-VON NEUMANN ALGEBRAS 344 19.1 Hecke Algebras 344 19.2 Hecke-Von Neumann Algebras 349 Chapter 20: WEIGHTED L2-(CO)HOMOLOGY 359 20.1 Weighted L2-(Co)homology 361 20.2 Weighted L2-Betti Numbers and Euler Characteristics 366 20.3 Concentration of (Co)homology in Dimension 0 368 20.4 Weighted Poincar?e Duality 370 20.5 A Weighted Version of the Singer Conjecture 374 20.6 Decomposition Theorems 376 20.7 Decoupling Cohomology 389 20.8 L2-Cohomology of Buildings 394 Appendix A: CELL COMPLEXES 401 A.1 Cells and Cell Complexes 401 A.2 Posets and Abstract Simplicial Complexes 406 A.3 Flag Complexes and Barycentric Subdivisions 409 A.4 Joins 412 A.5 Faces and Cofaces 415 A.6 Links 418 Appendix B: REGULAR POLYTOPES 421 B.1 Chambers in the Barycentric Subdivision of a Polytope 421 B.2 Classification of Regular Polytopes 424 B.3 Regular Tessellations of Spheres 426 B.4 Regular Tessellations 428 Appendix C: THE CLASSIFICATION OF SPHERICAL AND EUCLIDEAN COXETER GROUPS 433 C.1 Statements of the Classification Theorems 433 C.2 Calculating Some Determinants 434 C.3 Proofs of the Classification Theorems 436 Appendix D: THE GEOMETRIC REPRESENTATION 439 D.1 Injectivity of the Geometric Representation 439 D.2 The Tits Cone 442 D.3 Complement on Root Systems 446 Appendix E: COMPLEXES OF GROUPS 449 E.1 Background on Graphs of Groups 450 E.2 Complexes of Groups 454 E.3 The Meyer-Vietoris Spectral Sequence 459 Appendix F: HOMOLOGY AND COHOMOLOGY OF GROUPS 465 F.1 Some Basic Definitions 465 F.2 Equivalent (Co)homology with Group Ring Coefficients 467 F.3 Cohomological Dimension and Geometric Dimension 470 F.4 Finiteness Conditions 471 F.5 Poincar?e Duality Groups and Duality Groups 474 Appendix G: ALGEBRAIC TOPOLOGY AT INFINITY 477 G.1 Some Algebra 477 G.2 Homology and Cohomology at Infinity 479 G.3 Ends of a Space 482 G.4 Semistability and the Fundamental Group at Infinity 483 Appendix H: THE NOVIKOV AND BOREL CONJECTURES 487 H.1 Around the Borel Conjecture 487 H.2 Smoothing Theory 491 H.3 The Surgery Exact Sequence and the Assembly Map Conjecture 493 H.4 The Novikov Conjecture 496 Appendix I: NONPOSITIVE CURVATURE 499 I.1 Geodesic Metric Spaces 499 I.2 The CAT(?)-Inequality 499 I.3 Polyhedra of Piecewise Constant Curvature 507 I.4 Properties of CAT(0) Groups 511 I.5 Piecewise Spherical Polyhedra 513 I.6 Gromov's Lemma 516 I.7 Moussong's Lemma 520 I.8 The Visual Boundary of a CAT(0)-Space 524 Appendix J: L2-(CO)HOMOLOGY 531 J.1 Background on von Neumann Algebras 531 J.2 The Regular Representation 531 J.3 L2-(Co)homology 538 J.4 Basic L2 Algebraic Topology 541 J.5 L2-Betti Numbers and Euler Characteristics 544 J.6 Poincar?e Duality 546 J.7 The Singer Conjecture 547 J.8 Vanishing Theorems 548 Bibliography 555 Index 573


Szczegóły: Geometry and Topology of Coxeter Groups - Michael W. Davis, M Davis

Tytuł: Geometry and Topology of Coxeter Groups
Autor: Michael W. Davis, M Davis
Producent: Princeton University Press
ISBN: 9780691131382
Rok produkcji: 2007
Ilość stron: 600
Oprawa: Twarda
Waga: 0.97 kg


Recenzje: Geometry and Topology of Coxeter Groups - Michael W. Davis, M Davis

Zaloguj się
Przypomnij hasło
×
×

Geometry and Topology of Coxeter Groups

,

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincar Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures. This book is one of those that grows with the reader: A graduate student can learn many properties, details and examples of Coxeter groups, while an expert can read about aspects of recent results in the theory of Coxeter groups and use the book as a guide to the literature. I strongly recommend this book to anybody who has any interest in geometric group theory. Anybody who reads (parts of) this book with an open mind will get a lot out of it. -- Ralf Gramlich Mathematical Reviews The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. L'Enseignement MathematiquePreface xiii Chapter 1: INTRODUCTION AND PREVIEW 1 1.1 Introduction 1 1.2 A Preview of the Right-Angled Case 9 Chapter 2: SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY 15 2.1 Cayley Graphs and Word Metrics 15 2.2 Cayley 2-Complexes 18 2.3 Background on Aspherical Spaces 21 Chapter 3: COXETER GROUPS 26 3.1 Dihedral Groups 26 3.2 Reflection Systems 30 3.3 Coxeter Systems 37 3.4 The Word Problem 40 3.5 Coxeter Diagrams 42 Chapter 4: MORE COMBINATORIAL THEORY OF COXETER GROUPS 44 4.1 Special Subgroups in Coxeter Groups 44 4.2 Reflections 46 4.3 The Shortest Element in a Special Coset 47 4.4 Another Characterization of Coxeter Groups 48 4.5 Convex Subsets of W 49 4.6 The Element of Longest Length 51 4.7 The Letters with Which a Reduced Expression Can End 53 4.8 A Lemma of Tits 55 4.9 Subgroups Generated by Reflections 57 4.10 Normalizers of Special Subgroups 59 Chapter 5: THE BASIC CONSTRUCTION 63 5.1 The Space U 63 5.2 The Case of a Pre-Coxeter System 66 5.3 Sectors in U 68 Chapter 6: GEOMETRIC REFLECTION GROUPS 72 6.1 Linear Reflections 73 6.2 Spaces of Constant Curvature 73 6.3 Polytopes with Nonobtuse Dihedral Angles 78 6.4 The Developing Map 81 6.5 Polygon Groups 85 6.6 Finite Linear Groups Generated by Reflections 87 6.7 Examples of Finite Reflection Groups 92 6.8 Geometric Simplices: The Gram Matrix and the Cosine Matrix 96 6.9 Simplicial Coxeter Groups: Lann?er's Theorem 102 6.10 Three-dimensional Hyperbolic Reflection Groups: Andreev's Theorem 103 6.11 Higher-dimensional Hyperbolic Reflection Groups: Vinberg's Theorem 110 6.12 The Canonical Representation 115 Chapter 7: THE COMPLEX 123 7.1 The Nerve of a Coxeter System 123 7.2 Geometric Realizations 126 7.3 A Cell Structure on 128 7.4 Examples 132 7.5 Fixed Posets and Fixed Subspaces 133 Chapter 8: THE ALGEBRAIC TOPOLOGY OF U AND OF 136 8.1 The Homology of U 137 8.2 Acyclicity Conditions 140 8.3 Cohomology with Compact Supports 146 8.4 The Case Where X Is a General Space 150 8.5 Cohomology with Group Ring Coefficients 152 8.6 Background on the Ends of a Group 157 8.7 The Ends of W 159 8.8 Splittings of Coxeter Groups 160 8.9 Cohomology of Normalizers of Spherical Special Subgroups 163 Chapter 9: THE FUNDAMENTAL GROUP AND THE FUNDAMENTAL GROUP AT INFINITY 166 9.1 The Fundamental Group of U 166 9.2 What Is Simply Connected at Infinity? 170 Chapter 10: ACTIONS ON MANIFOLDS 176 10.1 Reflection Groups on Manifolds 177 10.2 The Tangent Bundle 183 10.3 Background on Contractible Manifolds 185 10.4 Background on Homology Manifolds 191 10.5 Aspherical Manifolds Not Covered by Euclidean Space 195 10.6 When Is a Manifold? 197 10.7 Reflection Groups on Homology Manifolds 197 10.8 Generalized Homology Spheres and Polytopes 201 10.9 Virtual Poincar?e Duality Groups 205 Chapter 11: THE REFLECTION GROUP TRICK 212 11.1 The First Version of the Trick 212 11.2 Examples of Fundamental Groups of Closed Aspherical Manifolds 215 11.3 Nonsmoothable Aspherical Manifolds 216 11.4 The Borel Conjecture and the PDn-Group Conjecture 217 11.5 The Second Version of the Trick 220 11.6 The Bestvina-Brady Examples 222 11.7 The Equivariant Reflection Group Trick 225 Chapter 12: IS CAT(0): THEOREMS OF GROMOV AND ZMOUSSONG 230 12.1 A Piecewise Euclidean Cell Structure on 231 12.2 The Right-Angled Case 233 12.3 The General Case 234 12.4 The Visual Boundary of 237 12.5 Background on Word Hyperbolic Groups 238 12.6 When Is CAT(-1)? 241 12.7 Free Abelian Subgroups of Coxeter Groups 245 12.8 Relative Hyperbolization 247 Chapter 13: RIGIDITY 255 13.1 Definitions, Examples, Counterexamples 255 13.2 Spherical Parabolic Subgroups and Their Fixed Subspaces 260 13.3 Coxeter Groups of Type PM 263 13.4 Strong Rigidity for Groups of Type PM 268 Chapter 14: FREE QUOTIENTS AND SURFACE SUBGROUPS 276 14.1 Largeness 276 14.2 Surface Subgroups 282 Chapter 15: ANOTHER LOOK AT (CO)HOMOLOGY 286 15.1 Cohomology with Constant Coefficients 286 15.2 Decompositions of Coefficient Systems 288 15.3 The W-Module Structure on (Co)homology 295 15.4 The Case Where W Is finite 303 Chapter 16: THE EULER CHARACTERISTIC 306 16.1 Background on Euler Characteristics 306 16.2 The Euler Characteristic Conjecture 310 16.3 The Flag Complex Conjecture 313 Chapter 17: GROWTH SERIES 315 17.1 Rationality of the Growth Series 315 17.2 Exponential versus Polynomial Growth 322 17.3 Reciprocity 324 17.4 Relationship with the h-Polynomial 325 Chapter 18: BUILDINGS 328 18.1 The Combinatorial Theory of Buildings 328 18.2 The Geometric Realization of a Building 336 18.3 Buildings Are CAT(0) 338 18.4 Euler-Poincar?e Measure 341 Chapter 19: HECKE-VON NEUMANN ALGEBRAS 344 19.1 Hecke Algebras 344 19.2 Hecke-Von Neumann Algebras 349 Chapter 20: WEIGHTED L2-(CO)HOMOLOGY 359 20.1 Weighted L2-(Co)homology 361 20.2 Weighted L2-Betti Numbers and Euler Characteristics 366 20.3 Concentration of (Co)homology in Dimension 0 368 20.4 Weighted Poincar?e Duality 370 20.5 A Weighted Version of the Singer Conjecture 374 20.6 Decomposition Theorems 376 20.7 Decoupling Cohomology 389 20.8 L2-Cohomology of Buildings 394 Appendix A: CELL COMPLEXES 401 A.1 Cells and Cell Complexes 401 A.2 Posets and Abstract Simplicial Complexes 406 A.3 Flag Complexes and Barycentric Subdivisions 409 A.4 Joins 412 A.5 Faces and Cofaces 415 A.6 Links 418 Appendix B: REGULAR POLYTOPES 421 B.1 Chambers in the Barycentric Subdivision of a Polytope 421 B.2 Classification of Regular Polytopes 424 B.3 Regular Tessellations of Spheres 426 B.4 Regular Tessellations 428 Appendix C: THE CLASSIFICATION OF SPHERICAL AND EUCLIDEAN COXETER GROUPS 433 C.1 Statements of the Classification Theorems 433 C.2 Calculating Some Determinants 434 C.3 Proofs of the Classification Theorems 436 Appendix D: THE GEOMETRIC REPRESENTATION 439 D.1 Injectivity of the Geometric Representation 439 D.2 The Tits Cone 442 D.3 Complement on Root Systems 446 Appendix E: COMPLEXES OF GROUPS 449 E.1 Background on Graphs of Groups 450 E.2 Complexes of Groups 454 E.3 The Meyer-Vietoris Spectral Sequence 459 Appendix F: HOMOLOGY AND COHOMOLOGY OF GROUPS 465 F.1 Some Basic Definitions 465 F.2 Equivalent (Co)homology with Group Ring Coefficients 467 F.3 Cohomological Dimension and Geometric Dimension 470 F.4 Finiteness Conditions 471 F.5 Poincar?e Duality Groups and Duality Groups 474 Appendix G: ALGEBRAIC TOPOLOGY AT INFINITY 477 G.1 Some Algebra 477 G.2 Homology and Cohomology at Infinity 479 G.3 Ends of a Space 482 G.4 Semistability and the Fundamental Group at Infinity 483 Appendix H: THE NOVIKOV AND BOREL CONJECTURES 487 H.1 Around the Borel Conjecture 487 H.2 Smoothing Theory 491 H.3 The Surgery Exact Sequence and the Assembly Map Conjecture 493 H.4 The Novikov Conjecture 496 Appendix I: NONPOSITIVE CURVATURE 499 I.1 Geodesic Metric Spaces 499 I.2 The CAT(?)-Inequality 499 I.3 Polyhedra of Piecewise Constant Curvature 507 I.4 Properties of CAT(0) Groups 511 I.5 Piecewise Spherical Polyhedra 513 I.6 Gromov's Lemma 516 I.7 Moussong's Lemma 520 I.8 The Visual Boundary of a CAT(0)-Space 524 Appendix J: L2-(CO)HOMOLOGY 531 J.1 Background on von Neumann Algebras 531 J.2 The Regular Representation 531 J.3 L2-(Co)homology 538 J.4 Basic L2 Algebraic Topology 541 J.5 L2-Betti Numbers and Euler Characteristics 544 J.6 Poincar?e Duality 546 J.7 The Singer Conjecture 547 J.8 Vanishing Theorems 548 Bibliography 555 Index 573

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 388,50 PLN
Nasza cena 366,60 PLN
Oszczędzasz 5%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Paypo

Szczegóły: Geometry and Topology of Coxeter Groups - Michael W. Davis, M Davis

Tytuł: Geometry and Topology of Coxeter Groups
Autor: Michael W. Davis, M Davis
Producent: Princeton University Press
ISBN: 9780691131382
Rok produkcji: 2007
Ilość stron: 600
Oprawa: Twarda
Waga: 0.97 kg


Recenzje: Geometry and Topology of Coxeter Groups - Michael W. Davis, M Davis

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×