Regression for Categorical Data

Wysyłka: Niedostępna
Sugerowana cena detaliczna 297,20 PLN
Nasza cena: 280,40 PLN
Oszczędzasz 5%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Paypo
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Regression for Categorical Data - Gerhard Tutz

This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods, which provide excellent tools for prediction and the handling of both nominal and ordered categorical predictors. The book is accompanied by an R package that contains data sets and code for all the examples.1. Introduction; 2. Binary regression: the logit model; 3. Generalized linear models; 4. Modeling of binary data; 5. Alternative binary regression models; 6. Regularization and variable selection for parametric models; 7. Regression analysis of count data; 8. Multinomial response models; 9. Ordinal response models; 10. Semi- and nonparametric generalized regression; 11. Tree-based methods; 12. The analysis of contingency tables: log-linear and graphical models; 13. Multivariate response models; 14. Random effects models; 15. Prediction and classification; Appendix A. Distributions; Appendix B. Some basic tools; Appendix C. Constrained estimation; Appendix D. Kullback-Leibler distance and information-based criteria of model fit; Appendix E. Numerical integration and tools for random effects modeling.


Szczegóły: Regression for Categorical Data - Gerhard Tutz

Tytuł: Regression for Categorical Data
Autor: Gerhard Tutz
Producent: Cambridge University Press
ISBN: 9781107009653
Rok produkcji: 2011
Ilość stron: 572
Oprawa: Twarda
Waga: 1.16 kg


Recenzje: Regression for Categorical Data - Gerhard Tutz

Zaloguj się
Przypomnij hasło
×
×

Regression for Categorical Data

This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods, which provide excellent tools for prediction and the handling of both nominal and ordered categorical predictors. The book is accompanied by an R package that contains data sets and code for all the examples.1. Introduction; 2. Binary regression: the logit model; 3. Generalized linear models; 4. Modeling of binary data; 5. Alternative binary regression models; 6. Regularization and variable selection for parametric models; 7. Regression analysis of count data; 8. Multinomial response models; 9. Ordinal response models; 10. Semi- and nonparametric generalized regression; 11. Tree-based methods; 12. The analysis of contingency tables: log-linear and graphical models; 13. Multivariate response models; 14. Random effects models; 15. Prediction and classification; Appendix A. Distributions; Appendix B. Some basic tools; Appendix C. Constrained estimation; Appendix D. Kullback-Leibler distance and information-based criteria of model fit; Appendix E. Numerical integration and tools for random effects modeling.

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 297,20 PLN
Nasza cena 280,40 PLN
Oszczędzasz 5%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Paypo

Szczegóły: Regression for Categorical Data - Gerhard Tutz

Tytuł: Regression for Categorical Data
Autor: Gerhard Tutz
Producent: Cambridge University Press
ISBN: 9781107009653
Rok produkcji: 2011
Ilość stron: 572
Oprawa: Twarda
Waga: 1.16 kg


Recenzje: Regression for Categorical Data - Gerhard Tutz

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×