Separation and Purification Technologies in Biorefineries

Wysyłka: Niedostępna
Sugerowana cena detaliczna 662,00 PLN
Nasza cena: 618,96 PLN
Oszczędzasz 6%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Paypo
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Separation and Purification Technologies in Biorefineries

Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.List of Contributors xix Preface xxiii PART I INTRODUCTION 1 1 Overview of Biomass Conversion Processes and Separation and Purification Technologies in Biorefineries 3 Hua-Jiang Huang and Shri Ramaswamy 1.1 Introduction 3 1.2 Biochemical conversion biorefineries 4 1.3 Thermo-chemical and other chemical conversion biorefineries 8 1.3.1 Thermo-chemical conversion biorefineries 8 1.3.1.1 Example: Biomass to gasoline process 10 1.3.2 Other chemical conversion biorefineries 11 1.3.2.1 Levulinic acid 11 1.3.2.2 Glycerol 12 1.3.2.3 Sorbitol 12 1.3.2.4 Xylitol/Arabinitol 12 1.3.2.5 Example: Conversion of oil-containing biomass for biodiesel 12 1.4 Integrated lignocellulose biorefineries 14 1.5 Separation and purification processes 15 1.5.1 Equilibrium-based separation processes 15 1.5.1.1 Absorption 15 1.5.1.2 Distillation 16 1.5.1.3 Liquid-liquid extraction 16 1.5.1.4 Supercritical fluid extraction 17 1.5.2 Affinity-based separation 18 1.5.2.1 Simulated moving-bed chromatography 19 1.5.3 Membrane separation 20 1.5.4 Solid--liquid separation 23 1.5.4.1 Conventional filtration 23 1.5.4.2 Solid--liquid extraction 23 1.5.4.3 Precipitation and crystallization 24 1.5.5 Reaction-separation systems for process intensification 24 1.5.5.1 Reaction--membrane separation systems 25 1.5.5.2 Extractive fermentation (Reaction--LLE systems) 25 1.5.5.3 Reactive distillation 27 1.5.5.4 Reactive absorption 27 1.6 Summary 27 References 28 PART II EQUILIBRIUM-BASED SEPARATION TECHNOLOGIES 37 2 Distillation 39 Zhigang Lei and Biaohua Chen 2.1 Introduction 39 2.2 Ordinary distillation 40 2.2.1 Thermodynamic fundamental 40 2.2.2 Distillation equipment 41 2.2.3 Application in biorefineries 43 2.3 Azeotropic distillation 45 2.3.1 Introduction 45 2.3.2 Example in biorefineries 46 2.3.3 Industrial challenges 47 2.4 Extractive distillation 48 2.4.1 Introduction 48 2.4.2 Extractive distillation with liquid solvents 50 2.4.3 Extractive distillation with solid salts 50 2.4.4 Extractive distillation with the mixture of liquid solvent and solid salt 51 2.4.5 Extractive distillation with ionic liquids 52 2.4.6 Examples in biorefineries 54 2.5 Molecular distillation 54 2.5.1 Introduction 54 2.5.2 Examples in biorefineries 55 2.5.3 Mathematical models 55 2.6 Comparisons of different distillation processes 55 2.7 Conclusions and future trends 58 Acknowledgement 58 References 58 3 Liquid-Liquid Extraction (LLE) 61 Jianguo Zhang and Bo Hu 3.1 Introduction to LLE: Literature review and recent developments 61 3.2 Fundamental principles of LLE 62 3.3 Categories of LLE design 65 3.4 Equipment for the LLE process 67 3.4.1 Criteria 67 3.4.2 Types of extractors 68 3.4.3 Issues with current extractors 70 3.5 Applications in biorefineries 70 3.5.1 Ethanol 70 3.5.2 Biodiesel 72 3.5.3 Carboxylic acids 73 3.5.4 Other biorefinery processes 73 3.6 The future development of LLE for the biorefinery setting 74 References 75 4 Supercritical Fluid Extraction 79 Casimiro Mantell, Lourdes Casas, Miguel Rodriguez and Enrique Martinez de la Ossa 4.1 Introduction 79 4.2 Principles of supercritical fluids 81 4.3 Market and industrial needs 83 4.4 Design and modeling of the process 84 4.4.1 Film theory 88 4.4.2 Penetration theory 88 4.5 Specific examples in biorefineries 89 4.5.1 Sugar/starch as a raw material 90 4.5.2 Supercritical extraction of vegetable oil 90 4.5.3 Supercritical extraction of lignocellulose biomass 91 4.5.4 Supercritical extraction of microalgae 92 4.6 Economic importance and industrial challenges 93 4.7 Conclusions and future trends 96 References 96 PART III AFFINITY-BASED SEPARATION TECHNOLOGIES 101 5 Adsorption 103 Saravanan Venkatesan 5.1 Introduction 103 5.2 Essential principles of adsorption 104 5.2.1 Adsorption isotherms 105 5.2.1.1 Freundlich isotherm 105 5.2.1.2 Langmuir isotherm 105 5.2.1.3 BET isotherm 107 5.2.1.4 Ideal adsorbed solution (IAS) theory 107 5.2.2 Types of adsorption isotherm 108 5.2.3 Adsorption hysteresis 109 5.2.4 Heat of adsorption 110 5.3 Adsorbent selection criteria 110 5.4 Commercial and new adsorbents and their properties 111 5.4.1 Activated carbon 112 5.4.2 Silica gel 113 5.4.3 Zeolites and molecular sieves 113 5.4.4 Activated alumina 114 5.4.5 Polymeric resins 114 5.4.6 Bio-based adsorbents 115 5.4.7 Metal organic frameworks (MOF) 116 5.5 Adsorption separation processes 116 5.5.1 Adsorbate concentration 116 5.5.2 Modes of adsorber operation 116 5.5.3 Adsorbent regeneration methods 117 5.5.3.1 Selection of regeneration method 117 5.5.3.2 Temperature swing adsorption (TSA) 117 5.5.3.3 Pressure swing adsorption (PSA) 120 5.6 Adsorber modeling 123 5.7 Application of adsorption in biorefineries 124 5.7.1 Examples of adsorption systems for removal of fermentation inhibitors from lignocellulosic biomass hydrolysate 125 5.7.2 Examples of adsorption systems for recovery of biofuels from dilute aqueous fermentation broth 129 5.7.2.1 In situ recovery of 1-butanol 129 5.7.2.2 Recovery of other prospective biofuel compounds 132 5.7.2.3 Ethanol dehydration 133 5.7.2.4 Biodiesel purification 135 5.8 A case study: Recovery of 1-butanol from ABE fermentation broth using TSA 136 5.8.1 Introduction 136 5.8.2 Adsorbent in extrudate form 136 5.8.3 Adsorption kinetics 136 5.8.4 Adsorption of 1-butanol by CBV28014 extrudates in a packed-bed column 136 5.8.5 Desorption 138 5.8.6 Equilibrium isotherms 139 5.8.7 Simulation of breakthrough curves 140 5.8.8 Summary from case study 140 5.9 Research needs and prospects 142 5.10 Conclusions 143 Acknowledgement 143 References 143 6 Ion Exchange 149 M. Berrios, J. A. Siles, M. A. Martin and A. Martin 6.1 Introduction 149 6.1.1 Ion exchangers: Operational conditions--sorbent selection 150 6.2 Essential principles 151 6.2.1 Properties of ion exchangers 151 6.3 Ion-exchange market and industrial needs 153 6.4 Commercial ion-exchange resins 154 6.4.1 Strong acid cation resins 154 6.4.2 Weak acid cation resins 154 6.4.3 Strong base anion resins 155 6.4.4 Weak base anion resins 155 6.5 Specific examples in biorefineries 156 6.5.1 Water softening 156 6.5.2 Total removal of electrolytes from water 157 Contents ix 6.5.3 Removal of nitrates in water 157 6.5.4 Applications in the food industry 157 6.5.5 Applications in chromatography 158 6.5.6 Special applications in water treatment 159 6.5.7 Metal recovery 159 6.5.8 Separation of isotopes or ions 160 6.5.9 Applications of zeolites in ion-exchange processes 160 6.5.10 Applications of ion exchange in catalytic processes 161 6.5.11 Recent applications of ion exchange in lignocellulosic bioefineries 162 6.5.12 Recent applications of ion exchange in biodiesel bioefineries 162 6.6 Conclusions and future trends 164 References 164 7 Simulated Moving-Bed Technology for Biorefinery Applications 167 Chim Yong Chin and Nien-Hwa Linda Wang 7.1 Introduction 167 7.1.1 Principles of separations in batch chromatography and SMB 167 7.1.2 The advantages of SMB 169 7.1.3 A brief history of SMB and its applications 169 7.1.4 Barriers to SMB applications 171 7.2 Essential SMB design principles and tools 171 7.2.1 Knowledge-driven design 172 7.2.2 Design and optimization for multicomponent separation 173 7.2.2.1 Standing-wave analysis (SWA) 173 7.2.2.2 Splitting strategies for multicomponent SMB systems 178 7.2.2.3 Comprehensive optimization with standing-wave (COSW) 178 7.2.2.4 Other design methodologies 181 7.2.3 SMB chromatographic simulation 181 7.2.4 SMB equipment 184 7.2.5 Advanced SMB operations 188 7.2.5.1 Simulated moving-bed reactors 190 7.2.6 SMB commercial manufacturers 190 7.3 Simulated moving-bed technology in biorefineries 191 7.3.1 SMB separation of sugar hydrolysate and concentrated sulfuric acid 192 7.3.2 Five-zone SMB for sugar isolation from dilute-acid hydrolysate 193 7.3.3 Simulated moving-bed purification of lactic acid in fermentation broth 195 7.3.4 SMB purification of glycerol by-product from biodiesel processing 196 7.4 Conclusions and future trends 197 References 197 PART IV MEMBRANE SEPARATION 203 8 Microfiltration, Ultrafiltration and Diafiltration 205 Ann-Sofi Jonsson 8.1 Introduction 205 8.1.1 Applications 206 8.1.2 Applications of ultrafiltration 206 8.2 Membrane plant design 207 8.2.1 Single-stage membrane plants 208 8.2.2 Multistage membrane plants 208 8.2.3 Membranes 209 8.2.4 Membrane modules 209 8.2.5 Design and operation of membrane plants 210 8.3 Economic considerations 210 8.3.1 Capital cost 211 8.3.2 Operating costs 211 8.4 Process design 213 8.4.1 Flux during concentration 213 8.4.2 Retention 213 8.4.3 Recovery and purity 214 8.5 Operating parameters 216 8.5.1 Pressure 217 8.5.2 Cross-flow velocity 218 8.5.3 Temperature 219 8.5.4 Concentration 220 8.5.5 Influence of concentration polarization and critical flux on retention 220 8.6 Diafiltration 222 8.7 Fouling and cleaning 224 8.7.1 Fouling 224 8.7.2 Pretreatment 225 8.7.3 Cleaning 225 8.8 Conclusions and future trends 226 References 226 9 Nanofiltration 233 Mika Manttari, Bart Van der Bruggen and Marianne Nystrom 9.1 Introduction 233 9.2 Nanofiltration market and industrial needs 235 9.3 Fundamental principles 236 9.3.1 Pressure and flux 236 9.3.2 Retention and fractionation 236 9.3.3 Influence of filtration parameters 237 9.4 Design and simulation 238 9.4.1 Water permeation 238 9.4.2 Solute retention 238 9.4.2.1 Retention of organic components 239 9.4.2.2 Retention of inorganic components 240 9.5 Membrane materials and properties 241 9.5.1 Structure of NF membranes 242 9.5.2 Hydrophilic and hydrophobic characteristics 242 9.5.3 Charge characteristics 242 9.6 Commercial nanofiltration membranes 245 9.7 Nanofiltration examples in biorefineries 246 9.7.1 Recovery and purification of monomeric acids 246 9.7.1.1 Separation of lactic acid and amino acids in fermentation plants 247 9.7.1.2 Separation of lactic acid from cheese whey fermentation broth 247 9.7.2 Biorefineries connected to pulping processes 247 9.7.2.1 Valorization of black liquor compounds 248 9.7.2.2 Purification of pre-extraction liquors and hydrolysates 250 9.7.2.3 Examples of monosaccharides purification 251 9.7.2.4 Nanofiltration to treat sulfite pulp mill liquors 252 9.7.3 Miscellaneous studies on extraction of natural raw materials 253 9.7.4 Industrial examples of NF in biorefinery 254 9.7.4.1 Recovery and purification of sodium hydroxide in viscose production 254 9.7.4.2 Xylose recovery and purification into permeate 254 9.7.4.3 Purification of dextrose syrup 255 9.8 Conclusions and challenges 256 References 256 10 Membrane Pervaporation 259 Yan Wang, Natalia Widjojo, Panu Sukitpaneenit and Tai-Shung Chung 10.1 Introduction 259 10.2 Membrane pervaporation market and industrial needs 260 10.3 Fundamental principles 261 10.3.1 Transport mechanisms 261 10.3.2 Evaluation of pervaporation membrane performance 264 10.4 Design principles of the pervaporation membrane 265 10.4.1 Membrane materials and selection 266 10.4.1.1 Polymeric pervaporation membranes for bioalcohol dehydration 267 10.4.1.2 Pervaporation membranes for biofuel recovery 271 10.4.2 Membrane morphology 281 10.4.3 Commercial pervaporation membranes 283 10.5 Pervaporation in the current integrated biorefinery system 283 10.6 Conclusions and future trends 288 Acknowledgements 289 References 289 11 Membrane Distillation 301 M. A. Izquierdo-Gil 11.1 Introduction 301 11.1.1 Direct-contact membrane distillation (DCMD) 302 11.1.2 Air gap membrane distillation (AGMD) 303 11.1.3 Sweeping gas membrane distillation (SGMD) 303 11.1.4 Vacuum membrane distillation (VMD) 304 11.2 Membrane distillation market and industrial needs 304 11.2.1 Pure water production 305 11.2.2 Waste water treatment 306 11.2.3 Concentration of agro-food solutions 306 11.2.4 Concentration of organic and biological solutions 307 11.3 Basic principles of membrane distillation 308 11.3.1 Mass transfer 308 11.3.2 Concentration polarization phenomena 311 11.3.3 Heat transport 311 11.3.4 Liquid entry pressure 312 11.4 Design and simulation 313 11.5 Examples in biorefineries 315 11.6 Economic importance and industrial challenges 317 11.7 Comparisons with other membrane-separation technologies 319 11.8 Conclusions and future trends 321 References 322 PART V SOLID-LIQUID SEPARATIONS 327 12 Filtration-Based Separations in the Biorefinery 329 Bhavin V. Bhayani and Bandaru V. Ramarao 12.1 Introduction 329 12.2 Biorefinery 330 12.2.1 Pretreatment 330 12.2.2 Hydrolyzate separations 332 12.2.3 Downstream fermentation and separations 335 12.3 Solid--liquid separations in the biorefinery 335 12.4 Introduction to cake filtration 336 12.5 Basics of cake filtration 336 12.5.1 Application in biorefineries 339 12.5.2 Specific points of interest 340 12.6 Designing a dead-end filtration 340 12.6.1 Determination of specific resistance 340 12.6.2 Membrane fouling 340 12.6.3 The effect of pressure on specific resistance--cake compressibility 342 12.6.4 Relating cake compressibility to cake particles morphology 342 12.6.5 Effects of particles surface properties and the medium liquid 344 12.6.6 Fouling in filtration of lignocellulosic hydrolyzates 345 12.7 Model development 346 12.7.1 Requirements of a model 348 12.8 Conclusions 348 References 348 13 Solid--Liquid Extraction in Biorefinery 351 Zurina Zainal Abidin, Dayang Radiah Awang Biak, Hamdan Mohamed Yusoff and Mohd Yusof Harun 13.1 Introduction 351 13.2 Principles of solid--liquid extraction 352 13.2.1 Extraction mode 353 13.2.1.1 Single-stage, batch 354 13.2.1.2 Multistage crosscurrent flow 354 13.2.1.3 Multistage countercurrent flow 354 13.2.2 Solid--liquid extraction techniques 355 13.2.2.1 Solvent extraction 355 13.2.2.2 High-pressure extraction 355 13.2.2.3 Ultrasonic-assisted extraction 355 13.2.2.4 Microwave-assisted extraction 355 13.2.2.5 Heat reflux extraction 355 13.3 State of the art technology 356 13.4 Design and modeling of SLE process 357 13.4.1 Pretreatment of raw materials 357 13.4.2 Solid--liquid extraction 359 13.4.3 Equipment and operational setup 360 13.4.4 Process modeling 361 13.4.5 Scaling up 363 13.5 Industrial extractors 363 13.5.1 Batch extractors 364 13.5.2 Continuous extractors 366 13.5.3 Extraction of specialty chemicals 368 13.6 Economic importance and industrial challenges 368 13.7 Conclusions 371 References 371 PART VI HYBRID/INTEGRATED REACTION-SEPARATION SYSTEMS--PROCESS INTENSIFICATION 375 14 Membrane Bioreactors for Biofuel Production 377 Sara M. Badenes, Frederico Castelo Ferreira and Joaquim M. S. Cabral 14.1 Introduction 377 14.1.1 Opportunities for membrane bioreactor in biofuel production 378 14.1.2 The market and industry needs 379 14.2 Basic principles 381 14.2.1 Biofuels: Production principles and biological systems 381 14.2.2 Transport in membrane systems 386 14.2.3 Membrane modules and reactor operations 389 14.2.4 Membrane bioreactor 390 14.3 Examples of membrane bioreactors for biofuel production 390 14.3.1 Bioethanol production 390 14.3.1.1 Overview 390 14.3.1.2 Membrane bioreactors for cell retention and ethanol removal 392 14.3.1.3 Upstream saccharification stage: Retention of hydrolytic enzymes and sugar permeation 395 14.3.1.4 Downstream ethanol purification stage: Pervaporation 396 14.3.2 Biodiesel production 397 14.3.2.1 Overview 397 14.3.2.2 Membrane bioreactor for biodiesel production 398 14.3.3 Biogas production 399 14.3.3.1 Overview 399 14.3.3.2 Membrane bioreactor for biogas production 400 14.4 Conclusions and future trends 403 References 404 15 Extraction-Fermentation Hybrid (Extractive Fermentation) 409 Shang-Tian Yang and Congcong Lu 15.1 Introduction 409 15.2 The market and industrial needs 410 15.3 Basic principles of extractive fermentation 412 15.4 Separation technologies for integrated fermentation product recovery 413 15.4.1 Gas stripping 413 15.4.2 Pervaporation 416 15.4.3 Liquid--liquid extraction 419 15.4.4 Adsorption 422 15.4.5 Electrodialysis 424 15.5 Examples in biorefineries 426 15.5.1 Extractive ABE fermentation for enhanced butanol production 426 15.5.2 Extractive fermentation for organic acids production 428 15.6 Economic importance and industrial challenges 428 15.7 Conclusions and future trends 431 References 431 16 Reactive Distillation for the Biorefinery 439 Aspi K. Kolah, Carl T. Lira and Dennis J. Miller 16.1 Introduction 439 16.1.1 Reactive distillation process principles 439 16.1.2 Motives for application of reactive distillation 440 16.1.2.1 Reaction properties 440 16.1.2.2 Separation properties 440 16.1.3 Limitations and disadvantages of reactive distillation 440 16.1.4 Homogeneous and heterogeneous reactive distillation 441 16.2 Column internals for reactive distillation 441 16.2.1 Random or dumped catalyst packings 442 16.2.2 Catalytic distillation trays 442 16.2.3 Catalyst bales 443 16.2.4 Structured packings 443 16.2.5 Internally finned monoliths 446 16.3 Simulation of reactive distillation systems 446 16.3.1 Phase equilibria 446 16.3.2 Characterization of reaction kinetics 447 16.3.3 Calculation of residue curve maps 448 16.3.4 Simulation and design of reactive distillation systems 450 16.3.4.1 Equilibrium stage model 450 16.3.4.2 Rate-based model 450 16.3.4.3 Design of reactive distillation systems 451 16.4 Reactive distillation for the biorefinery 451 16.4.1 Esterification of carboxylic acids and transesterification of esters 451 16.4.1.1 Biodiesel production 452 16.4.1.2 Esterification of long-chain fatty acids 453 16.4.1.3 Lactate esterification 453 16.4.1.4 Short-chain organic acid esterification 454 16.4.1.5 Reactive distillation for glycerol esterification 455 16.4.2 Etherification 456 16.4.3 Acetal formation 457 16.4.4 Reactive distillation for thermochemical conversion pathways 457 16.5 Recently commercialized reactive distillation processes for the biorefinery 458 16.6 Conclusions 458 References 459 17 Reactive Absorption 467 Anton A. Kiss and Costin Sorin Bildea 17.1 Introduction 467 17.2 Market and industrial needs 468 17.3 Basic principles of reactive absorption 468 17.4 Modelling, design and simulation 469 17.5 Case study: Biodiesel production by catalytic reactive absorption 470 17.5.1 Problem statement 471 17.5.2 Heat-integrated process design 471 17.5.3 Property model and kinetics 473 17.5.4 Steady-state simulation results 474 17.5.5 Sensitivity analysis 476 17.5.6 Dynamics and plantwide control 478 17.6 Economic importance and industrial challenges 482 17.7 Conclusions and future trends 482 References 482 PART VII CASE STUDIES OF SEPARATION AND PURIFICATION TECHNOLOGIES IN BIOREFINERIES 485 18 Cellulosic Bioethanol Production 487 Mats Galbe, Ola Wallberg and Guido Zacchi 18.1 Introduction: The market and industrial needs 487 18.2 Separation procedures and their integration within a bioethanol plant 488 18.2.1 Process configurations 488 18.3 Importance and challenges of separation processes 490 18.3.1 Distillation 490 18.3.2 Dehydration of ethanol 493 18.3.2.1 Adsorption on zeolites 493 18.3.2.2 Pervaporation and vapor permeation 494 18.3.3 Evaporation 495 18.3.4 Liquid--solid separation 496 18.3.4.1 Filtration of solid residue (lignin) 496 18.3.4.2 Recovery of yeast 496 18.3.5 Drying of solids 497 18.3.5.1 Air dryer heated to low temperature by waste heat 497 18.3.5.2 Air dryer heated by back-pressure steam 498 18.3.5.3 Superheated steam dryer heated by high pressure steam 498 18.3.6 Upgrading of biogas 498 18.4 Pilot and demonstration scale 498 18.5 Conclusions and future trends 500 References 500 19 Dehydration of Ethanol using Pressure Swing Adsorption 503 Marian Simo 19.1 Introduction 503 19.2 Ethanol dehydration process using pressure swing adsorption 504 19.2.1 Adsorption equilibrium and kinetics 504 19.2.2 Principle of pressure swing adsorption 506 19.2.3 Ethanol PSA process cycle 506 19.2.3.1 Two-bed ethanol PSA cycle steps 506 19.2.4 Process performance and energy needs 507 19.3 Future trends and industrial challenges 510 19.4 Conclusions 511 References 511 20 Separation and Purification of Lignocellulose Hydrolyzates 513 G. Peter van Walsum 20.1 Introduction 513 20.1.1 Sugar platform 513 20.1.2 Biomass hydrolysis 513 20.1.3 Biomass pretreatment 514 20.1.4 Wood degradation products and potential biological inhibitors 515 20.1.5 Detoxification of wood hydrolysates 516 20.2 The market and industrial needs 516 20.2.1 Microbial inhibition by biomass degradation products 516 20.2.2 Enzyme inhibition by biomass degradation products 517 20.3 Operation variables and conditions 517 20.3.1 Effects of pretreatment conditions on enzymes and microbial cultures 517 20.3.2 Quantification of microbial inhibitors in pretreatment hydrolysates 518 20.3.3 Separations challenges posed by biomass degradation products 518 20.4 The hydrolyzates detoxification and separation processes 519 20.4.1 Evaporation, flashing 519 20.4.2 High pH treatment 519 20.4.2.1 Cation effects in overliming 519 20.4.2.2 pH and temperature effects 520 20.4.2.3 Different fermentative organisms 521 20.4.3 Adsorption 521 20.4.4 Liquid--liquid extraction 522 20.4.5 Ion exchange 522 20.4.6 Polymer-induced flocculation 523 20.4.7 Dialysis 523 20.4.8 Microbial detoxification 523 20.4.9 Enzyme detoxification 524 20.4.10 Microbial accommodation of inhibitors 524 20.5 Separation performances and results 524 20.6 Economic importance and industrial challenges 525 20.6.1 Cost of slow enzymes 525 20.6.2 Cost of slow fermentations 525 20.6.3 Benefits of co-products 526 20.6.4 Material consumption 526 20.6.5 Complexity: Capital and operating cost 527 20.6.6 Waste reduction 527 20.7 Conclusions 527 References 527 21 Case Studies of Separation in Biorefineries--Extraction of Algae Oil from Microalgae 533 Michael Cooney 21.1 Introduction 533 21.2 The market and industrial needs 534 21.2.1 Feedstock markets 534 21.2.2 Biodiesel markets 536 21.2.3 Algae products 537 21.2.4 Industrial needs 537 21.3 The algae oil extraction process 539 21.3.1 Harvesting/isolation 539 21.3.2 Drying 539 21.3.3 Cell wall lyses/disruption 539 21.4 Extraction 540 21.4.1 Organic-solvent based 540 21.4.2 Aqueous based 541 21.4.3 Combined aqueous and organic phases 543 21.4.4 Supercritical fluids 544 21.4.5 Solventless extraction 545 21.4.6 Emerging technologies 545 21.4.7 Refining lipids 546 21.5 Separation performance and results 546 21.6 Economic importance and industrial challenges 548 21.7 Conclusions and future trends 549 References 550 22 Separation Processes in Biopolymer Production 555 Sanjay P. Kamble, Prashant P. Barve, Imran Rahman and Bhaskar D. Kulkarni 22.1 Introduction 555 22.2 The market and industrial needs 556 22.3 Lactic acid recovery processes 559 22.3.1 Electrodialysis 559 22.3.2 Adsorption 559 22.3.3 Reactive extraction 560 22.3.4 Reverse osmosis 560 22.3.5 Reactive distillation 561 22.4 Separation performance and results of autocatalytic counter current reactive distillation of lactic acid with methanol and hydrolysis of methyl lactate into highly pure lactic acid using 3-CSTRs in series 561 22.5 Economic importance and industrial challenges 564 22.6 Conclusions and future trends 565 Acknowledgements 566 References 566 Index 569


Szczegóły: Separation and Purification Technologies in Biorefineries

Tytuł: Separation and Purification Technologies in Biorefineries
Producent: Blackwell Science
ISBN: 9780470977965
Rok produkcji: 2012
Ilość stron: 608
Oprawa: Twarda
Waga: 1.19 kg


Recenzje: Separation and Purification Technologies in Biorefineries

Zaloguj się
Przypomnij hasło
×
×

Separation and Purification Technologies in Biorefineries

Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.List of Contributors xix Preface xxiii PART I INTRODUCTION 1 1 Overview of Biomass Conversion Processes and Separation and Purification Technologies in Biorefineries 3 Hua-Jiang Huang and Shri Ramaswamy 1.1 Introduction 3 1.2 Biochemical conversion biorefineries 4 1.3 Thermo-chemical and other chemical conversion biorefineries 8 1.3.1 Thermo-chemical conversion biorefineries 8 1.3.1.1 Example: Biomass to gasoline process 10 1.3.2 Other chemical conversion biorefineries 11 1.3.2.1 Levulinic acid 11 1.3.2.2 Glycerol 12 1.3.2.3 Sorbitol 12 1.3.2.4 Xylitol/Arabinitol 12 1.3.2.5 Example: Conversion of oil-containing biomass for biodiesel 12 1.4 Integrated lignocellulose biorefineries 14 1.5 Separation and purification processes 15 1.5.1 Equilibrium-based separation processes 15 1.5.1.1 Absorption 15 1.5.1.2 Distillation 16 1.5.1.3 Liquid-liquid extraction 16 1.5.1.4 Supercritical fluid extraction 17 1.5.2 Affinity-based separation 18 1.5.2.1 Simulated moving-bed chromatography 19 1.5.3 Membrane separation 20 1.5.4 Solid--liquid separation 23 1.5.4.1 Conventional filtration 23 1.5.4.2 Solid--liquid extraction 23 1.5.4.3 Precipitation and crystallization 24 1.5.5 Reaction-separation systems for process intensification 24 1.5.5.1 Reaction--membrane separation systems 25 1.5.5.2 Extractive fermentation (Reaction--LLE systems) 25 1.5.5.3 Reactive distillation 27 1.5.5.4 Reactive absorption 27 1.6 Summary 27 References 28 PART II EQUILIBRIUM-BASED SEPARATION TECHNOLOGIES 37 2 Distillation 39 Zhigang Lei and Biaohua Chen 2.1 Introduction 39 2.2 Ordinary distillation 40 2.2.1 Thermodynamic fundamental 40 2.2.2 Distillation equipment 41 2.2.3 Application in biorefineries 43 2.3 Azeotropic distillation 45 2.3.1 Introduction 45 2.3.2 Example in biorefineries 46 2.3.3 Industrial challenges 47 2.4 Extractive distillation 48 2.4.1 Introduction 48 2.4.2 Extractive distillation with liquid solvents 50 2.4.3 Extractive distillation with solid salts 50 2.4.4 Extractive distillation with the mixture of liquid solvent and solid salt 51 2.4.5 Extractive distillation with ionic liquids 52 2.4.6 Examples in biorefineries 54 2.5 Molecular distillation 54 2.5.1 Introduction 54 2.5.2 Examples in biorefineries 55 2.5.3 Mathematical models 55 2.6 Comparisons of different distillation processes 55 2.7 Conclusions and future trends 58 Acknowledgement 58 References 58 3 Liquid-Liquid Extraction (LLE) 61 Jianguo Zhang and Bo Hu 3.1 Introduction to LLE: Literature review and recent developments 61 3.2 Fundamental principles of LLE 62 3.3 Categories of LLE design 65 3.4 Equipment for the LLE process 67 3.4.1 Criteria 67 3.4.2 Types of extractors 68 3.4.3 Issues with current extractors 70 3.5 Applications in biorefineries 70 3.5.1 Ethanol 70 3.5.2 Biodiesel 72 3.5.3 Carboxylic acids 73 3.5.4 Other biorefinery processes 73 3.6 The future development of LLE for the biorefinery setting 74 References 75 4 Supercritical Fluid Extraction 79 Casimiro Mantell, Lourdes Casas, Miguel Rodriguez and Enrique Martinez de la Ossa 4.1 Introduction 79 4.2 Principles of supercritical fluids 81 4.3 Market and industrial needs 83 4.4 Design and modeling of the process 84 4.4.1 Film theory 88 4.4.2 Penetration theory 88 4.5 Specific examples in biorefineries 89 4.5.1 Sugar/starch as a raw material 90 4.5.2 Supercritical extraction of vegetable oil 90 4.5.3 Supercritical extraction of lignocellulose biomass 91 4.5.4 Supercritical extraction of microalgae 92 4.6 Economic importance and industrial challenges 93 4.7 Conclusions and future trends 96 References 96 PART III AFFINITY-BASED SEPARATION TECHNOLOGIES 101 5 Adsorption 103 Saravanan Venkatesan 5.1 Introduction 103 5.2 Essential principles of adsorption 104 5.2.1 Adsorption isotherms 105 5.2.1.1 Freundlich isotherm 105 5.2.1.2 Langmuir isotherm 105 5.2.1.3 BET isotherm 107 5.2.1.4 Ideal adsorbed solution (IAS) theory 107 5.2.2 Types of adsorption isotherm 108 5.2.3 Adsorption hysteresis 109 5.2.4 Heat of adsorption 110 5.3 Adsorbent selection criteria 110 5.4 Commercial and new adsorbents and their properties 111 5.4.1 Activated carbon 112 5.4.2 Silica gel 113 5.4.3 Zeolites and molecular sieves 113 5.4.4 Activated alumina 114 5.4.5 Polymeric resins 114 5.4.6 Bio-based adsorbents 115 5.4.7 Metal organic frameworks (MOF) 116 5.5 Adsorption separation processes 116 5.5.1 Adsorbate concentration 116 5.5.2 Modes of adsorber operation 116 5.5.3 Adsorbent regeneration methods 117 5.5.3.1 Selection of regeneration method 117 5.5.3.2 Temperature swing adsorption (TSA) 117 5.5.3.3 Pressure swing adsorption (PSA) 120 5.6 Adsorber modeling 123 5.7 Application of adsorption in biorefineries 124 5.7.1 Examples of adsorption systems for removal of fermentation inhibitors from lignocellulosic biomass hydrolysate 125 5.7.2 Examples of adsorption systems for recovery of biofuels from dilute aqueous fermentation broth 129 5.7.2.1 In situ recovery of 1-butanol 129 5.7.2.2 Recovery of other prospective biofuel compounds 132 5.7.2.3 Ethanol dehydration 133 5.7.2.4 Biodiesel purification 135 5.8 A case study: Recovery of 1-butanol from ABE fermentation broth using TSA 136 5.8.1 Introduction 136 5.8.2 Adsorbent in extrudate form 136 5.8.3 Adsorption kinetics 136 5.8.4 Adsorption of 1-butanol by CBV28014 extrudates in a packed-bed column 136 5.8.5 Desorption 138 5.8.6 Equilibrium isotherms 139 5.8.7 Simulation of breakthrough curves 140 5.8.8 Summary from case study 140 5.9 Research needs and prospects 142 5.10 Conclusions 143 Acknowledgement 143 References 143 6 Ion Exchange 149 M. Berrios, J. A. Siles, M. A. Martin and A. Martin 6.1 Introduction 149 6.1.1 Ion exchangers: Operational conditions--sorbent selection 150 6.2 Essential principles 151 6.2.1 Properties of ion exchangers 151 6.3 Ion-exchange market and industrial needs 153 6.4 Commercial ion-exchange resins 154 6.4.1 Strong acid cation resins 154 6.4.2 Weak acid cation resins 154 6.4.3 Strong base anion resins 155 6.4.4 Weak base anion resins 155 6.5 Specific examples in biorefineries 156 6.5.1 Water softening 156 6.5.2 Total removal of electrolytes from water 157 Contents ix 6.5.3 Removal of nitrates in water 157 6.5.4 Applications in the food industry 157 6.5.5 Applications in chromatography 158 6.5.6 Special applications in water treatment 159 6.5.7 Metal recovery 159 6.5.8 Separation of isotopes or ions 160 6.5.9 Applications of zeolites in ion-exchange processes 160 6.5.10 Applications of ion exchange in catalytic processes 161 6.5.11 Recent applications of ion exchange in lignocellulosic bioefineries 162 6.5.12 Recent applications of ion exchange in biodiesel bioefineries 162 6.6 Conclusions and future trends 164 References 164 7 Simulated Moving-Bed Technology for Biorefinery Applications 167 Chim Yong Chin and Nien-Hwa Linda Wang 7.1 Introduction 167 7.1.1 Principles of separations in batch chromatography and SMB 167 7.1.2 The advantages of SMB 169 7.1.3 A brief history of SMB and its applications 169 7.1.4 Barriers to SMB applications 171 7.2 Essential SMB design principles and tools 171 7.2.1 Knowledge-driven design 172 7.2.2 Design and optimization for multicomponent separation 173 7.2.2.1 Standing-wave analysis (SWA) 173 7.2.2.2 Splitting strategies for multicomponent SMB systems 178 7.2.2.3 Comprehensive optimization with standing-wave (COSW) 178 7.2.2.4 Other design methodologies 181 7.2.3 SMB chromatographic simulation 181 7.2.4 SMB equipment 184 7.2.5 Advanced SMB operations 188 7.2.5.1 Simulated moving-bed reactors 190 7.2.6 SMB commercial manufacturers 190 7.3 Simulated moving-bed technology in biorefineries 191 7.3.1 SMB separation of sugar hydrolysate and concentrated sulfuric acid 192 7.3.2 Five-zone SMB for sugar isolation from dilute-acid hydrolysate 193 7.3.3 Simulated moving-bed purification of lactic acid in fermentation broth 195 7.3.4 SMB purification of glycerol by-product from biodiesel processing 196 7.4 Conclusions and future trends 197 References 197 PART IV MEMBRANE SEPARATION 203 8 Microfiltration, Ultrafiltration and Diafiltration 205 Ann-Sofi Jonsson 8.1 Introduction 205 8.1.1 Applications 206 8.1.2 Applications of ultrafiltration 206 8.2 Membrane plant design 207 8.2.1 Single-stage membrane plants 208 8.2.2 Multistage membrane plants 208 8.2.3 Membranes 209 8.2.4 Membrane modules 209 8.2.5 Design and operation of membrane plants 210 8.3 Economic considerations 210 8.3.1 Capital cost 211 8.3.2 Operating costs 211 8.4 Process design 213 8.4.1 Flux during concentration 213 8.4.2 Retention 213 8.4.3 Recovery and purity 214 8.5 Operating parameters 216 8.5.1 Pressure 217 8.5.2 Cross-flow velocity 218 8.5.3 Temperature 219 8.5.4 Concentration 220 8.5.5 Influence of concentration polarization and critical flux on retention 220 8.6 Diafiltration 222 8.7 Fouling and cleaning 224 8.7.1 Fouling 224 8.7.2 Pretreatment 225 8.7.3 Cleaning 225 8.8 Conclusions and future trends 226 References 226 9 Nanofiltration 233 Mika Manttari, Bart Van der Bruggen and Marianne Nystrom 9.1 Introduction 233 9.2 Nanofiltration market and industrial needs 235 9.3 Fundamental principles 236 9.3.1 Pressure and flux 236 9.3.2 Retention and fractionation 236 9.3.3 Influence of filtration parameters 237 9.4 Design and simulation 238 9.4.1 Water permeation 238 9.4.2 Solute retention 238 9.4.2.1 Retention of organic components 239 9.4.2.2 Retention of inorganic components 240 9.5 Membrane materials and properties 241 9.5.1 Structure of NF membranes 242 9.5.2 Hydrophilic and hydrophobic characteristics 242 9.5.3 Charge characteristics 242 9.6 Commercial nanofiltration membranes 245 9.7 Nanofiltration examples in biorefineries 246 9.7.1 Recovery and purification of monomeric acids 246 9.7.1.1 Separation of lactic acid and amino acids in fermentation plants 247 9.7.1.2 Separation of lactic acid from cheese whey fermentation broth 247 9.7.2 Biorefineries connected to pulping processes 247 9.7.2.1 Valorization of black liquor compounds 248 9.7.2.2 Purification of pre-extraction liquors and hydrolysates 250 9.7.2.3 Examples of monosaccharides purification 251 9.7.2.4 Nanofiltration to treat sulfite pulp mill liquors 252 9.7.3 Miscellaneous studies on extraction of natural raw materials 253 9.7.4 Industrial examples of NF in biorefinery 254 9.7.4.1 Recovery and purification of sodium hydroxide in viscose production 254 9.7.4.2 Xylose recovery and purification into permeate 254 9.7.4.3 Purification of dextrose syrup 255 9.8 Conclusions and challenges 256 References 256 10 Membrane Pervaporation 259 Yan Wang, Natalia Widjojo, Panu Sukitpaneenit and Tai-Shung Chung 10.1 Introduction 259 10.2 Membrane pervaporation market and industrial needs 260 10.3 Fundamental principles 261 10.3.1 Transport mechanisms 261 10.3.2 Evaluation of pervaporation membrane performance 264 10.4 Design principles of the pervaporation membrane 265 10.4.1 Membrane materials and selection 266 10.4.1.1 Polymeric pervaporation membranes for bioalcohol dehydration 267 10.4.1.2 Pervaporation membranes for biofuel recovery 271 10.4.2 Membrane morphology 281 10.4.3 Commercial pervaporation membranes 283 10.5 Pervaporation in the current integrated biorefinery system 283 10.6 Conclusions and future trends 288 Acknowledgements 289 References 289 11 Membrane Distillation 301 M. A. Izquierdo-Gil 11.1 Introduction 301 11.1.1 Direct-contact membrane distillation (DCMD) 302 11.1.2 Air gap membrane distillation (AGMD) 303 11.1.3 Sweeping gas membrane distillation (SGMD) 303 11.1.4 Vacuum membrane distillation (VMD) 304 11.2 Membrane distillation market and industrial needs 304 11.2.1 Pure water production 305 11.2.2 Waste water treatment 306 11.2.3 Concentration of agro-food solutions 306 11.2.4 Concentration of organic and biological solutions 307 11.3 Basic principles of membrane distillation 308 11.3.1 Mass transfer 308 11.3.2 Concentration polarization phenomena 311 11.3.3 Heat transport 311 11.3.4 Liquid entry pressure 312 11.4 Design and simulation 313 11.5 Examples in biorefineries 315 11.6 Economic importance and industrial challenges 317 11.7 Comparisons with other membrane-separation technologies 319 11.8 Conclusions and future trends 321 References 322 PART V SOLID-LIQUID SEPARATIONS 327 12 Filtration-Based Separations in the Biorefinery 329 Bhavin V. Bhayani and Bandaru V. Ramarao 12.1 Introduction 329 12.2 Biorefinery 330 12.2.1 Pretreatment 330 12.2.2 Hydrolyzate separations 332 12.2.3 Downstream fermentation and separations 335 12.3 Solid--liquid separations in the biorefinery 335 12.4 Introduction to cake filtration 336 12.5 Basics of cake filtration 336 12.5.1 Application in biorefineries 339 12.5.2 Specific points of interest 340 12.6 Designing a dead-end filtration 340 12.6.1 Determination of specific resistance 340 12.6.2 Membrane fouling 340 12.6.3 The effect of pressure on specific resistance--cake compressibility 342 12.6.4 Relating cake compressibility to cake particles morphology 342 12.6.5 Effects of particles surface properties and the medium liquid 344 12.6.6 Fouling in filtration of lignocellulosic hydrolyzates 345 12.7 Model development 346 12.7.1 Requirements of a model 348 12.8 Conclusions 348 References 348 13 Solid--Liquid Extraction in Biorefinery 351 Zurina Zainal Abidin, Dayang Radiah Awang Biak, Hamdan Mohamed Yusoff and Mohd Yusof Harun 13.1 Introduction 351 13.2 Principles of solid--liquid extraction 352 13.2.1 Extraction mode 353 13.2.1.1 Single-stage, batch 354 13.2.1.2 Multistage crosscurrent flow 354 13.2.1.3 Multistage countercurrent flow 354 13.2.2 Solid--liquid extraction techniques 355 13.2.2.1 Solvent extraction 355 13.2.2.2 High-pressure extraction 355 13.2.2.3 Ultrasonic-assisted extraction 355 13.2.2.4 Microwave-assisted extraction 355 13.2.2.5 Heat reflux extraction 355 13.3 State of the art technology 356 13.4 Design and modeling of SLE process 357 13.4.1 Pretreatment of raw materials 357 13.4.2 Solid--liquid extraction 359 13.4.3 Equipment and operational setup 360 13.4.4 Process modeling 361 13.4.5 Scaling up 363 13.5 Industrial extractors 363 13.5.1 Batch extractors 364 13.5.2 Continuous extractors 366 13.5.3 Extraction of specialty chemicals 368 13.6 Economic importance and industrial challenges 368 13.7 Conclusions 371 References 371 PART VI HYBRID/INTEGRATED REACTION-SEPARATION SYSTEMS--PROCESS INTENSIFICATION 375 14 Membrane Bioreactors for Biofuel Production 377 Sara M. Badenes, Frederico Castelo Ferreira and Joaquim M. S. Cabral 14.1 Introduction 377 14.1.1 Opportunities for membrane bioreactor in biofuel production 378 14.1.2 The market and industry needs 379 14.2 Basic principles 381 14.2.1 Biofuels: Production principles and biological systems 381 14.2.2 Transport in membrane systems 386 14.2.3 Membrane modules and reactor operations 389 14.2.4 Membrane bioreactor 390 14.3 Examples of membrane bioreactors for biofuel production 390 14.3.1 Bioethanol production 390 14.3.1.1 Overview 390 14.3.1.2 Membrane bioreactors for cell retention and ethanol removal 392 14.3.1.3 Upstream saccharification stage: Retention of hydrolytic enzymes and sugar permeation 395 14.3.1.4 Downstream ethanol purification stage: Pervaporation 396 14.3.2 Biodiesel production 397 14.3.2.1 Overview 397 14.3.2.2 Membrane bioreactor for biodiesel production 398 14.3.3 Biogas production 399 14.3.3.1 Overview 399 14.3.3.2 Membrane bioreactor for biogas production 400 14.4 Conclusions and future trends 403 References 404 15 Extraction-Fermentation Hybrid (Extractive Fermentation) 409 Shang-Tian Yang and Congcong Lu 15.1 Introduction 409 15.2 The market and industrial needs 410 15.3 Basic principles of extractive fermentation 412 15.4 Separation technologies for integrated fermentation product recovery 413 15.4.1 Gas stripping 413 15.4.2 Pervaporation 416 15.4.3 Liquid--liquid extraction 419 15.4.4 Adsorption 422 15.4.5 Electrodialysis 424 15.5 Examples in biorefineries 426 15.5.1 Extractive ABE fermentation for enhanced butanol production 426 15.5.2 Extractive fermentation for organic acids production 428 15.6 Economic importance and industrial challenges 428 15.7 Conclusions and future trends 431 References 431 16 Reactive Distillation for the Biorefinery 439 Aspi K. Kolah, Carl T. Lira and Dennis J. Miller 16.1 Introduction 439 16.1.1 Reactive distillation process principles 439 16.1.2 Motives for application of reactive distillation 440 16.1.2.1 Reaction properties 440 16.1.2.2 Separation properties 440 16.1.3 Limitations and disadvantages of reactive distillation 440 16.1.4 Homogeneous and heterogeneous reactive distillation 441 16.2 Column internals for reactive distillation 441 16.2.1 Random or dumped catalyst packings 442 16.2.2 Catalytic distillation trays 442 16.2.3 Catalyst bales 443 16.2.4 Structured packings 443 16.2.5 Internally finned monoliths 446 16.3 Simulation of reactive distillation systems 446 16.3.1 Phase equilibria 446 16.3.2 Characterization of reaction kinetics 447 16.3.3 Calculation of residue curve maps 448 16.3.4 Simulation and design of reactive distillation systems 450 16.3.4.1 Equilibrium stage model 450 16.3.4.2 Rate-based model 450 16.3.4.3 Design of reactive distillation systems 451 16.4 Reactive distillation for the biorefinery 451 16.4.1 Esterification of carboxylic acids and transesterification of esters 451 16.4.1.1 Biodiesel production 452 16.4.1.2 Esterification of long-chain fatty acids 453 16.4.1.3 Lactate esterification 453 16.4.1.4 Short-chain organic acid esterification 454 16.4.1.5 Reactive distillation for glycerol esterification 455 16.4.2 Etherification 456 16.4.3 Acetal formation 457 16.4.4 Reactive distillation for thermochemical conversion pathways 457 16.5 Recently commercialized reactive distillation processes for the biorefinery 458 16.6 Conclusions 458 References 459 17 Reactive Absorption 467 Anton A. Kiss and Costin Sorin Bildea 17.1 Introduction 467 17.2 Market and industrial needs 468 17.3 Basic principles of reactive absorption 468 17.4 Modelling, design and simulation 469 17.5 Case study: Biodiesel production by catalytic reactive absorption 470 17.5.1 Problem statement 471 17.5.2 Heat-integrated process design 471 17.5.3 Property model and kinetics 473 17.5.4 Steady-state simulation results 474 17.5.5 Sensitivity analysis 476 17.5.6 Dynamics and plantwide control 478 17.6 Economic importance and industrial challenges 482 17.7 Conclusions and future trends 482 References 482 PART VII CASE STUDIES OF SEPARATION AND PURIFICATION TECHNOLOGIES IN BIOREFINERIES 485 18 Cellulosic Bioethanol Production 487 Mats Galbe, Ola Wallberg and Guido Zacchi 18.1 Introduction: The market and industrial needs 487 18.2 Separation procedures and their integration within a bioethanol plant 488 18.2.1 Process configurations 488 18.3 Importance and challenges of separation processes 490 18.3.1 Distillation 490 18.3.2 Dehydration of ethanol 493 18.3.2.1 Adsorption on zeolites 493 18.3.2.2 Pervaporation and vapor permeation 494 18.3.3 Evaporation 495 18.3.4 Liquid--solid separation 496 18.3.4.1 Filtration of solid residue (lignin) 496 18.3.4.2 Recovery of yeast 496 18.3.5 Drying of solids 497 18.3.5.1 Air dryer heated to low temperature by waste heat 497 18.3.5.2 Air dryer heated by back-pressure steam 498 18.3.5.3 Superheated steam dryer heated by high pressure steam 498 18.3.6 Upgrading of biogas 498 18.4 Pilot and demonstration scale 498 18.5 Conclusions and future trends 500 References 500 19 Dehydration of Ethanol using Pressure Swing Adsorption 503 Marian Simo 19.1 Introduction 503 19.2 Ethanol dehydration process using pressure swing adsorption 504 19.2.1 Adsorption equilibrium and kinetics 504 19.2.2 Principle of pressure swing adsorption 506 19.2.3 Ethanol PSA process cycle 506 19.2.3.1 Two-bed ethanol PSA cycle steps 506 19.2.4 Process performance and energy needs 507 19.3 Future trends and industrial challenges 510 19.4 Conclusions 511 References 511 20 Separation and Purification of Lignocellulose Hydrolyzates 513 G. Peter van Walsum 20.1 Introduction 513 20.1.1 Sugar platform 513 20.1.2 Biomass hydrolysis 513 20.1.3 Biomass pretreatment 514 20.1.4 Wood degradation products and potential biological inhibitors 515 20.1.5 Detoxification of wood hydrolysates 516 20.2 The market and industrial needs 516 20.2.1 Microbial inhibition by biomass degradation products 516 20.2.2 Enzyme inhibition by biomass degradation products 517 20.3 Operation variables and conditions 517 20.3.1 Effects of pretreatment conditions on enzymes and microbial cultures 517 20.3.2 Quantification of microbial inhibitors in pretreatment hydrolysates 518 20.3.3 Separations challenges posed by biomass degradation products 518 20.4 The hydrolyzates detoxification and separation processes 519 20.4.1 Evaporation, flashing 519 20.4.2 High pH treatment 519 20.4.2.1 Cation effects in overliming 519 20.4.2.2 pH and temperature effects 520 20.4.2.3 Different fermentative organisms 521 20.4.3 Adsorption 521 20.4.4 Liquid--liquid extraction 522 20.4.5 Ion exchange 522 20.4.6 Polymer-induced flocculation 523 20.4.7 Dialysis 523 20.4.8 Microbial detoxification 523 20.4.9 Enzyme detoxification 524 20.4.10 Microbial accommodation of inhibitors 524 20.5 Separation performances and results 524 20.6 Economic importance and industrial challenges 525 20.6.1 Cost of slow enzymes 525 20.6.2 Cost of slow fermentations 525 20.6.3 Benefits of co-products 526 20.6.4 Material consumption 526 20.6.5 Complexity: Capital and operating cost 527 20.6.6 Waste reduction 527 20.7 Conclusions 527 References 527 21 Case Studies of Separation in Biorefineries--Extraction of Algae Oil from Microalgae 533 Michael Cooney 21.1 Introduction 533 21.2 The market and industrial needs 534 21.2.1 Feedstock markets 534 21.2.2 Biodiesel markets 536 21.2.3 Algae products 537 21.2.4 Industrial needs 537 21.3 The algae oil extraction process 539 21.3.1 Harvesting/isolation 539 21.3.2 Drying 539 21.3.3 Cell wall lyses/disruption 539 21.4 Extraction 540 21.4.1 Organic-solvent based 540 21.4.2 Aqueous based 541 21.4.3 Combined aqueous and organic phases 543 21.4.4 Supercritical fluids 544 21.4.5 Solventless extraction 545 21.4.6 Emerging technologies 545 21.4.7 Refining lipids 546 21.5 Separation performance and results 546 21.6 Economic importance and industrial challenges 548 21.7 Conclusions and future trends 549 References 550 22 Separation Processes in Biopolymer Production 555 Sanjay P. Kamble, Prashant P. Barve, Imran Rahman and Bhaskar D. Kulkarni 22.1 Introduction 555 22.2 The market and industrial needs 556 22.3 Lactic acid recovery processes 559 22.3.1 Electrodialysis 559 22.3.2 Adsorption 559 22.3.3 Reactive extraction 560 22.3.4 Reverse osmosis 560 22.3.5 Reactive distillation 561 22.4 Separation performance and results of autocatalytic counter current reactive distillation of lactic acid with methanol and hydrolysis of methyl lactate into highly pure lactic acid using 3-CSTRs in series 561 22.5 Economic importance and industrial challenges 564 22.6 Conclusions and future trends 565 Acknowledgements 566 References 566 Index 569

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 662,00 PLN
Nasza cena 618,96 PLN
Oszczędzasz 6%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Paypo

Szczegóły: Separation and Purification Technologies in Biorefineries

Tytuł: Separation and Purification Technologies in Biorefineries
Producent: Blackwell Science
ISBN: 9780470977965
Rok produkcji: 2012
Ilość stron: 608
Oprawa: Twarda
Waga: 1.19 kg


Recenzje: Separation and Purification Technologies in Biorefineries

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×