Optimal Automated Process Fault Analysis

,

Wysyłka: Niedostępna
Sugerowana cena detaliczna 340,20 PLN
Nasza cena: 321,00 PLN
Oszczędzasz 5%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Paypo
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Optimal Automated Process Fault Analysis - Richard J. Fickelscherer, Daniel L. Chester

Automated fault analysis is still not widely used within chemical processing industries due to problems of cost and performance as well as the difficulty of modeling process behavior at needed levels of detail. In response, this book presents the method of minimal evidence (MOME), a model-based diagnostic strategy that facilitates the development and implementation of optimal automated process fault analyzers. With this book as their guide, readers have a powerful new tool for ensuring the safety and reliability of any chemical processing system.Dedication Table of Contents Foreword Preface Acknowledgements Chapter 1. Motivations for Automating Process Fault Analysis 1.1 Introduction 1.2 CPI Trends to Date 1.3 The Changing Role for the Process Operators in Plant Operations 1.4 Methods Currently Used to Perform Process Fault Management 1.5 Limitations of Human Operators in Performing Process Fault Management 1.6 The Role of Automated Process Fault Analysis 1.7 Anticipated Future CPI Trends 1.8 Process Fault Analysis Concept Terminology Chapter 2. Method of Minimal Evidence: Model-Based Reasoning 2.1 Overview 2.2 Introduction 2.3 Method of Minimal Evidence Overview 2.4 Verifying the Validity and Accuracy of the Various Primary Models 2.5 Summary Chapter 3. Method of Minimal Evidence: Diagnostic Strategy Details 3.1 Overview 3.2 Introduction 3.3 MOME Diagnostic Strategy 3.4 A General Procedure for Developing and Verifying Competent Model-based 3.5 MOME SV & PFA Diagnostic Logic Compiler Motivations 3.6 MOME Diagnostic Strategy Summary Chapter 4. Method of Minimal Evidence: Fuzzy Logic Algorithm 4.1 Overview 4.2 Introduction 4.3 Fuzzy Logic Overview 4.4 MOME Fuzzy Logic Algorithm 4.5 Certainty Factor Calculation Review 4.6 MOME Fuzzy Logic Algorithm Summary Chapter 5. Method of Minimal Evidence: Criteria for Shrewdly Distribution Fault Analyzers and Strategic Process Sensor Placement 5.1 Overview 5.2 Criteria for Shrewdly Distributing Process Fault Analyzers 5.3 Criteria for Strategic Process Sensor Placement Chapter 6. Virtual SPC Analysis and Its Routine Use in Falconeer(t); IV 6.1 Overview 6.2 Introduction 6.3 EWMA Calculations and Specific Virtual SPC Analysis Configurations 6.4 Virtual SPC Alarm Trigger Summary 6.5 Virtual SPC Analysis Conclusions Chapter 7. Process State Transistion Logic and Its Routine Use in Falconeer(t); IV 7.1 Temporal Reasoning Philosophy 7.2 Introduction 7.3 State Identification Analysis Currently Used in Falconeer(t); IV 7.4 State Identification Analysis Summary Chapter 8. Conclusions 8.1 Overview 8.2 Summary of the MOME Diagnostic Strategy 8.3 FALCON, FALCONEER and FALCONEER(t); IV Actual KBS Application Performance Results 8.4 FALCONEER(t); IV KBS Application Project Procedure 8.5 Optimal Automated Process Fault Analysis Conclusions Appendix A. Various Diagnostic Strategies for Automating Process Fault Analysis Appendix B. The Falcon Project Appendix C. Process State Transition Logic Used by the Original Falconeer KBS Appendix D. Falconeer(t); IV Real-Time Suite Process Performance Solutions Demo Description


Szczegóły: Optimal Automated Process Fault Analysis - Richard J. Fickelscherer, Daniel L. Chester

Tytuł: Optimal Automated Process Fault Analysis
Autor: Richard J. Fickelscherer, Daniel L. Chester
Producent: John Wiley
ISBN: 9781118372319
Rok produkcji: 2013
Ilość stron: 224
Oprawa: Twarda
Waga: 0.51 kg


Recenzje: Optimal Automated Process Fault Analysis - Richard J. Fickelscherer, Daniel L. Chester

Zaloguj się
Przypomnij hasło
×
×

Optimal Automated Process Fault Analysis

,

Automated fault analysis is still not widely used within chemical processing industries due to problems of cost and performance as well as the difficulty of modeling process behavior at needed levels of detail. In response, this book presents the method of minimal evidence (MOME), a model-based diagnostic strategy that facilitates the development and implementation of optimal automated process fault analyzers. With this book as their guide, readers have a powerful new tool for ensuring the safety and reliability of any chemical processing system.Dedication Table of Contents Foreword Preface Acknowledgements Chapter 1. Motivations for Automating Process Fault Analysis 1.1 Introduction 1.2 CPI Trends to Date 1.3 The Changing Role for the Process Operators in Plant Operations 1.4 Methods Currently Used to Perform Process Fault Management 1.5 Limitations of Human Operators in Performing Process Fault Management 1.6 The Role of Automated Process Fault Analysis 1.7 Anticipated Future CPI Trends 1.8 Process Fault Analysis Concept Terminology Chapter 2. Method of Minimal Evidence: Model-Based Reasoning 2.1 Overview 2.2 Introduction 2.3 Method of Minimal Evidence Overview 2.4 Verifying the Validity and Accuracy of the Various Primary Models 2.5 Summary Chapter 3. Method of Minimal Evidence: Diagnostic Strategy Details 3.1 Overview 3.2 Introduction 3.3 MOME Diagnostic Strategy 3.4 A General Procedure for Developing and Verifying Competent Model-based 3.5 MOME SV & PFA Diagnostic Logic Compiler Motivations 3.6 MOME Diagnostic Strategy Summary Chapter 4. Method of Minimal Evidence: Fuzzy Logic Algorithm 4.1 Overview 4.2 Introduction 4.3 Fuzzy Logic Overview 4.4 MOME Fuzzy Logic Algorithm 4.5 Certainty Factor Calculation Review 4.6 MOME Fuzzy Logic Algorithm Summary Chapter 5. Method of Minimal Evidence: Criteria for Shrewdly Distribution Fault Analyzers and Strategic Process Sensor Placement 5.1 Overview 5.2 Criteria for Shrewdly Distributing Process Fault Analyzers 5.3 Criteria for Strategic Process Sensor Placement Chapter 6. Virtual SPC Analysis and Its Routine Use in Falconeer(t); IV 6.1 Overview 6.2 Introduction 6.3 EWMA Calculations and Specific Virtual SPC Analysis Configurations 6.4 Virtual SPC Alarm Trigger Summary 6.5 Virtual SPC Analysis Conclusions Chapter 7. Process State Transistion Logic and Its Routine Use in Falconeer(t); IV 7.1 Temporal Reasoning Philosophy 7.2 Introduction 7.3 State Identification Analysis Currently Used in Falconeer(t); IV 7.4 State Identification Analysis Summary Chapter 8. Conclusions 8.1 Overview 8.2 Summary of the MOME Diagnostic Strategy 8.3 FALCON, FALCONEER and FALCONEER(t); IV Actual KBS Application Performance Results 8.4 FALCONEER(t); IV KBS Application Project Procedure 8.5 Optimal Automated Process Fault Analysis Conclusions Appendix A. Various Diagnostic Strategies for Automating Process Fault Analysis Appendix B. The Falcon Project Appendix C. Process State Transition Logic Used by the Original Falconeer KBS Appendix D. Falconeer(t); IV Real-Time Suite Process Performance Solutions Demo Description

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 340,20 PLN
Nasza cena 321,00 PLN
Oszczędzasz 5%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Paypo

Szczegóły: Optimal Automated Process Fault Analysis - Richard J. Fickelscherer, Daniel L. Chester

Tytuł: Optimal Automated Process Fault Analysis
Autor: Richard J. Fickelscherer, Daniel L. Chester
Producent: John Wiley
ISBN: 9781118372319
Rok produkcji: 2013
Ilość stron: 224
Oprawa: Twarda
Waga: 0.51 kg


Recenzje: Optimal Automated Process Fault Analysis - Richard J. Fickelscherer, Daniel L. Chester

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×