Capillary Electrophoresis and Microchip Capillary Electrophoresis
Wysyłka: Niedostępna
Sugerowana cena detaliczna 431,55 PLN
Nasza cena: 418,17 PLN
Oszczędzasz 3%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów
Opis: Capillary Electrophoresis and Microchip Capillary Electrophoresis - Karin Y. Chumbimuni-Torres, Carlos D. Garcia, Emanuel Carrilho

Providing the most current information related to separations by capillary electrophoresis and microchip capillary electrophoresis, this innovative text provides a fundamental understanding of the CE and microchip-CE and their applications, along with troubleshooting hints. Emphasizing applications, such as protein characterization, Capillary Electrophoresis and Microchip Capillary Electrophoresis covers the most fundamental aspects of electrophoretically driven separations, specific problems linked to capillary electrophoresis at the microchip scale, including microfabrication techniques, separation modes, and detection systems, and concludes with a critical discussion related to applications of the technique.Chapter 1: Critical Evaluation of the Use of Surfactants in Capillary Electrophoresis Jessica Felhofer, Karin Chumbimuni-Torres, Maria F. Mora, Gabrielle Haby, and Carlos D. Garcia 1. Introduction 2. Surfactant Structures and Properties 3. Surfactants for Wall Coatings 3.1. Controlling the Electroosmotic Flow 3.2. Preventing Adsorption to the Capillary 4. Surfactants as Buffer Additives 4.1. Micellar Electrokinetic Chromatography 4.2. Microemulsion Electrokinetic Chromatography 4.3. Non-Aqueous Capillary Electrophoresis with Added Surfactants 5. Surfactants for Analyte Preconcentration 5.1. Sweeping 5.2. Transient Trapping 5.3. Analyte Focusing by Micelle Collapse 5.4. Micelle to Solvent Stacking 5.5. Combinations of Preconcentration Methods 5.6. Cloud Point Extraction 6. Surfactants and Detection in CE 6.1. Mass Spectrometry 6.2. Electrochemical Detection 7. Conclusions 8. References Chapter 2: Sample Stacking - A Versatile Approach for Analyte Enrichment in CE and Microchip-CE Bruno Perlattia, Emanuel Carrilhob,*, Fernando Armani Aguiarc 1. Introduction 2. Isotachophoresis 3. Chromatography based sample stacking 4. Methods based on electrophoretic mobility and velocity manipulation (Electrophoretic Methods) 4.1. Field Enhanced Sample Stacking (FESS) 4.2. Field Enhanced Sample Injection (FESI) 4.3. Large Volume Sample Stacking (LVSS) 4.4. Dynamic pH Junction 5. Sample Stacking in pseudo-stationary phases 5.1. Field Enhanced Sample Stacking 5.2. Hydrodynamic injection techniques 5.2.1. Normal stacking mode (NSM) 5.2.2. Reversed electrode polarity stacking mode (REPSM) 5.2.3. Stacking with reverse migrating micelles (SRMM) 5.2.4. Stacking using reverse migrating micelles and a water plug (SRW) 5.2.5. High-conductivity sample stacking (HCSS) 5.3.E lectrokinetic injection techniques 5.3.1. Field-enhanced sample injection (FESI-MEKC) 5.3.2. Field-enhanced sample injection with reverse migrating micelles (FESI-RMM) 5.4. Sweeping 5.5. Combined techniques 5.5.1. Dynamic pH Junction-Sweeping 5.5.2. Selective Exhaustive Injection (SEI) 5.6. New Techniques 6. Stacking techniques in Microchips 7. Concluding Remarks 8. References Chapter 3: Sampling and Quantitative Analysis in Capillary Electrophoresis Petr Kubao*, Andrus Seiman, Mihkel Kaljurand 1. Introduction 2. Injection techniques in CE 2.1 Hydrodynamic sample injection 2.1.1 Principle 2.1.2 Advantages and performance 2.1.3 Disadvantages 2.2 Electrokinetic sample injection 2.2.1 Principle 2.2.2 Advantages and performance 2.2.3 Disadvantages 2.3 Bias free electrokinetic injection 2.4 Extraneous sample introduction accompanying injections in CE 2.5 Sample stacking 2.5.1 Principle 2.5.2 Advantages and performance 2.5.3 Disadvantages 2.6 Alternative batch sample injection techniques 2.6.1 Rotary type injectors for CE 2.6.2 Hydrodynamic sample splitting as injection method for CE 2.6.3 Electrokinetic sample splitting as injection method for CE 2.6.4 Dual-opposite end injection in CE 3. Micromachined/microchip injection devices 3.1 Droplet sampler based on digital microfluidics 3.2 Wire loop injection 4. Automated flow sample injection and hyphenated systems 4.1 Introduction 4.2 Advantages and performance 4.3 Disadvantages 5. Computerized sampling and data analysis 6. Sampling in portable CE instrumentation 7. Quantitative analysis in CE 7.1 Introduction 7.2 Quantitative analysis with HD injection 7.3 Quantitative analysis with EK injection 7.4 Validation of the developed CE method 7.5 Computer data treatment in quantitative analysis 8. Conclusions 9. References Chapter 4: Practical considerations for the design and implementation of High Voltage Power Supplies for Capillary and Microchip Capillary Electrophoresis Lucas Blanes1, Wendell Karlos Tomazelli Coltro2,3, Renata Mayumi Saito4, Claudimir Lucio do Lago3,4, Claude Roux1 and Philip Doble1. 1. INTRODUCTION 1.1 - High Voltage Fundamentals 1.2 - Electroosmotic flow control 1.3 - Technical aspects 1.4 - Construction of Bipolar HVPS from unipolar HVPS 1.5 - Safety considerations 1.6 - HVPS commercially available 1.7 - Practical considerations 1.8 - Alternative sources of HV 1.9- HVPS controllers for MCE 2- High Voltage measurement 3. Concluding Remarks 4. References Chapter 5: ARTIFICIAL NEURAL NETWORKS IN CAPILLARY ELECTROPHORESIS Josef Havel, Eladia Maria Pena-Mendez, Alberto Rojas-Hernandez 1. Introduction 2. Optimization in CE. From single variable approach towards Artificial Neural Networks 2.1 Limitations of "traditional" single variable approach 2.2 Multivariate approach with Experimental design and response surface modeling 2.2.1 Experimental design 2.2.2 Response surface modeling 3. Artificial Neural Networks in electromigration methods 3.1 Introduction - basic principles of ANN 3.2 Optimization using a combination of ED and ANN 3.2.1 Testing of ED-ANN algorithm 3.2.2 Practical applications of ED-ANN 3.3 Quantitative CE analysis and determination from overlapped peaks 3.3.1 Evaluation of calibration plots in CE using ANN to increase precision of analysis 3.3.2 ANN in quantitative CE analysis from overlapped peaks 3.4 ANN in CEC and MEKC 3.5 ANN for peptides modeling 3.6 Classification and fingerprinting 3.7 Other applications 4. Conclusions 5. Acknowledgements 6. References Chapter 6: IMPROVING THE SEPARATION IN MICROCHIP ELECTROPHORESIS BY SURFACE MODIFICATION M. Teresa Fernandez-Abedul1, Isabel Alvarez-Martos1, Francisco Javier Garcia Alonso2, Agustin Costa-Garcia 1. Introduction 2 Strategies for improving separation 2.1 Selection of an adequate technique: ME 2.2 Microchannel design 2.3 Selection of an appropriate ME material 2.4 Optimization of the working conditions 2.5 Surface modification 2.5.1 Surface micro and nanostructuration 2.5.2 Employment of energy sources 2.5.3 Chemical surface modification 2.5.3.1 Application to bioassays 2.5.3.2 When the surface modification is made? 2.5.3.3 Where does the modification takes place? 2.5.3.4 How is the modification performed? 2.5.3.5 What electrophoresis mode is the modification made for? 3 Chemical modifiers 3.1 Surfactants 3.2 Ionic liquids 3.3 Nanoparticles 3.4 Polymers 4. Conclusions 5. Acknowledgements 6. References Chapter 7: Capillary Electrophoretic Reactor and Microchip Capillary Electrophoretic Reactor: Dissociation Kinetic Analysis Method for "Complexes" Using Capillary Electrophoretic Separation Process Toru Takahashi and Nobuhiko Iki 1.Introduction 2.Basic concept of CER 3. Dissociation kinetic analysis of metal complexes by CER 3.1 Derivation of the Rate Constants of Dissociation of 1:2 complexesof Al3+ and Ga3+ with an azo dye ligand, 2,2'-dihydroxyazobenzene- 5,5'-disulfonate in CER. 3.2 Expanding the scope of the CER to measurement of fast dissociation kinetics with a half-life from seconds to dozens of seconds: Dissociation kinetic analysis of metal complexes by microchip capillary electrophoretic reactor (muCER) 3.3 Expanding the scope of the CER to measurement of slow dissociation kinetics with a half-life of hours 4. Principle of LS-CER 4.1 LS-CER of Ti(IV)-Catechin Complex 4.2 LS-CER of Ti(IV)-Tiron Complex. 5. Expanding the scope of the CER to measurement of dissociation kinetics of biomolecular complexes 6. Dissociation kinetic analysis of [SSB-ssDNA] by CER 7. Conclusions 8. References and Notes Chapter 8: Capacitively Coupled Contactless Conductivity Detection (C4D) Applied to Capillary Electrophoresis (CE) and Microchip Electrophoresis (MCE) Jose Alberto Fracassi da Silva, Claudimir Lucio do Lago, Dosil Pereira de Jesus, Wendell Karlos Tomazelli Coltro 1. Introduction 2. Theory of C4D 2.1 Basic principles of C4D 2.2 Simulation 2.3 Basic Equation for Sensitivity 2.4 Equivalent Circuit of a CE-C4D System 2.5 Practical Guidelines 3. C4D Applied to Capillary Electrophoresis 3.1 Ins


Szczegóły: Capillary Electrophoresis and Microchip Capillary Electrophoresis - Karin Y. Chumbimuni-Torres, Carlos D. Garcia, Emanuel Carrilho

Tytuł: Capillary Electrophoresis and Microchip Capillary Electrophoresis
Autor: Karin Y. Chumbimuni-Torres, Carlos D. Garcia, Emanuel Carrilho
Producent: Blackwell Science
ISBN: 9780470572177
Rok produkcji: 2013
Ilość stron: 416
Oprawa: Twarda
Waga: 1.18 kg


Recenzje: Capillary Electrophoresis and Microchip Capillary Electrophoresis - Karin Y. Chumbimuni-Torres, Carlos D. Garcia, Emanuel Carrilho
Zaloguj się
Przypomnij hasło
×
×

Capillary Electrophoresis and Microchip Capillary Electrophoresis

, ,

Providing the most current information related to separations by capillary electrophoresis and microchip capillary electrophoresis, this innovative text provides a fundamental understanding of the CE and microchip-CE and their applications, along with troubleshooting hints. Emphasizing applications, such as protein characterization, Capillary Electrophoresis and Microchip Capillary Electrophoresis covers the most fundamental aspects of electrophoretically driven separations, specific problems linked to capillary electrophoresis at the microchip scale, including microfabrication techniques, separation modes, and detection systems, and concludes with a critical discussion related to applications of the technique.Chapter 1: Critical Evaluation of the Use of Surfactants in Capillary Electrophoresis Jessica Felhofer, Karin Chumbimuni-Torres, Maria F. Mora, Gabrielle Haby, and Carlos D. Garcia 1. Introduction 2. Surfactant Structures and Properties 3. Surfactants for Wall Coatings 3.1. Controlling the Electroosmotic Flow 3.2. Preventing Adsorption to the Capillary 4. Surfactants as Buffer Additives 4.1. Micellar Electrokinetic Chromatography 4.2. Microemulsion Electrokinetic Chromatography 4.3. Non-Aqueous Capillary Electrophoresis with Added Surfactants 5. Surfactants for Analyte Preconcentration 5.1. Sweeping 5.2. Transient Trapping 5.3. Analyte Focusing by Micelle Collapse 5.4. Micelle to Solvent Stacking 5.5. Combinations of Preconcentration Methods 5.6. Cloud Point Extraction 6. Surfactants and Detection in CE 6.1. Mass Spectrometry 6.2. Electrochemical Detection 7. Conclusions 8. References Chapter 2: Sample Stacking - A Versatile Approach for Analyte Enrichment in CE and Microchip-CE Bruno Perlattia, Emanuel Carrilhob,*, Fernando Armani Aguiarc 1. Introduction 2. Isotachophoresis 3. Chromatography based sample stacking 4. Methods based on electrophoretic mobility and velocity manipulation (Electrophoretic Methods) 4.1. Field Enhanced Sample Stacking (FESS) 4.2. Field Enhanced Sample Injection (FESI) 4.3. Large Volume Sample Stacking (LVSS) 4.4. Dynamic pH Junction 5. Sample Stacking in pseudo-stationary phases 5.1. Field Enhanced Sample Stacking 5.2. Hydrodynamic injection techniques 5.2.1. Normal stacking mode (NSM) 5.2.2. Reversed electrode polarity stacking mode (REPSM) 5.2.3. Stacking with reverse migrating micelles (SRMM) 5.2.4. Stacking using reverse migrating micelles and a water plug (SRW) 5.2.5. High-conductivity sample stacking (HCSS) 5.3.E lectrokinetic injection techniques 5.3.1. Field-enhanced sample injection (FESI-MEKC) 5.3.2. Field-enhanced sample injection with reverse migrating micelles (FESI-RMM) 5.4. Sweeping 5.5. Combined techniques 5.5.1. Dynamic pH Junction-Sweeping 5.5.2. Selective Exhaustive Injection (SEI) 5.6. New Techniques 6. Stacking techniques in Microchips 7. Concluding Remarks 8. References Chapter 3: Sampling and Quantitative Analysis in Capillary Electrophoresis Petr Kubao*, Andrus Seiman, Mihkel Kaljurand 1. Introduction 2. Injection techniques in CE 2.1 Hydrodynamic sample injection 2.1.1 Principle 2.1.2 Advantages and performance 2.1.3 Disadvantages 2.2 Electrokinetic sample injection 2.2.1 Principle 2.2.2 Advantages and performance 2.2.3 Disadvantages 2.3 Bias free electrokinetic injection 2.4 Extraneous sample introduction accompanying injections in CE 2.5 Sample stacking 2.5.1 Principle 2.5.2 Advantages and performance 2.5.3 Disadvantages 2.6 Alternative batch sample injection techniques 2.6.1 Rotary type injectors for CE 2.6.2 Hydrodynamic sample splitting as injection method for CE 2.6.3 Electrokinetic sample splitting as injection method for CE 2.6.4 Dual-opposite end injection in CE 3. Micromachined/microchip injection devices 3.1 Droplet sampler based on digital microfluidics 3.2 Wire loop injection 4. Automated flow sample injection and hyphenated systems 4.1 Introduction 4.2 Advantages and performance 4.3 Disadvantages 5. Computerized sampling and data analysis 6. Sampling in portable CE instrumentation 7. Quantitative analysis in CE 7.1 Introduction 7.2 Quantitative analysis with HD injection 7.3 Quantitative analysis with EK injection 7.4 Validation of the developed CE method 7.5 Computer data treatment in quantitative analysis 8. Conclusions 9. References Chapter 4: Practical considerations for the design and implementation of High Voltage Power Supplies for Capillary and Microchip Capillary Electrophoresis Lucas Blanes1, Wendell Karlos Tomazelli Coltro2,3, Renata Mayumi Saito4, Claudimir Lucio do Lago3,4, Claude Roux1 and Philip Doble1. 1. INTRODUCTION 1.1 - High Voltage Fundamentals 1.2 - Electroosmotic flow control 1.3 - Technical aspects 1.4 - Construction of Bipolar HVPS from unipolar HVPS 1.5 - Safety considerations 1.6 - HVPS commercially available 1.7 - Practical considerations 1.8 - Alternative sources of HV 1.9- HVPS controllers for MCE 2- High Voltage measurement 3. Concluding Remarks 4. References Chapter 5: ARTIFICIAL NEURAL NETWORKS IN CAPILLARY ELECTROPHORESIS Josef Havel, Eladia Maria Pena-Mendez, Alberto Rojas-Hernandez 1. Introduction 2. Optimization in CE. From single variable approach towards Artificial Neural Networks 2.1 Limitations of "traditional" single variable approach 2.2 Multivariate approach with Experimental design and response surface modeling 2.2.1 Experimental design 2.2.2 Response surface modeling 3. Artificial Neural Networks in electromigration methods 3.1 Introduction - basic principles of ANN 3.2 Optimization using a combination of ED and ANN 3.2.1 Testing of ED-ANN algorithm 3.2.2 Practical applications of ED-ANN 3.3 Quantitative CE analysis and determination from overlapped peaks 3.3.1 Evaluation of calibration plots in CE using ANN to increase precision of analysis 3.3.2 ANN in quantitative CE analysis from overlapped peaks 3.4 ANN in CEC and MEKC 3.5 ANN for peptides modeling 3.6 Classification and fingerprinting 3.7 Other applications 4. Conclusions 5. Acknowledgements 6. References Chapter 6: IMPROVING THE SEPARATION IN MICROCHIP ELECTROPHORESIS BY SURFACE MODIFICATION M. Teresa Fernandez-Abedul1, Isabel Alvarez-Martos1, Francisco Javier Garcia Alonso2, Agustin Costa-Garcia 1. Introduction 2 Strategies for improving separation 2.1 Selection of an adequate technique: ME 2.2 Microchannel design 2.3 Selection of an appropriate ME material 2.4 Optimization of the working conditions 2.5 Surface modification 2.5.1 Surface micro and nanostructuration 2.5.2 Employment of energy sources 2.5.3 Chemical surface modification 2.5.3.1 Application to bioassays 2.5.3.2 When the surface modification is made? 2.5.3.3 Where does the modification takes place? 2.5.3.4 How is the modification performed? 2.5.3.5 What electrophoresis mode is the modification made for? 3 Chemical modifiers 3.1 Surfactants 3.2 Ionic liquids 3.3 Nanoparticles 3.4 Polymers 4. Conclusions 5. Acknowledgements 6. References Chapter 7: Capillary Electrophoretic Reactor and Microchip Capillary Electrophoretic Reactor: Dissociation Kinetic Analysis Method for "Complexes" Using Capillary Electrophoretic Separation Process Toru Takahashi and Nobuhiko Iki 1.Introduction 2.Basic concept of CER 3. Dissociation kinetic analysis of metal complexes by CER 3.1 Derivation of the Rate Constants of Dissociation of 1:2 complexesof Al3+ and Ga3+ with an azo dye ligand, 2,2'-dihydroxyazobenzene- 5,5'-disulfonate in CER. 3.2 Expanding the scope of the CER to measurement of fast dissociation kinetics with a half-life from seconds to dozens of seconds: Dissociation kinetic analysis of metal complexes by microchip capillary electrophoretic reactor (muCER) 3.3 Expanding the scope of the CER to measurement of slow dissociation kinetics with a half-life of hours 4. Principle of LS-CER 4.1 LS-CER of Ti(IV)-Catechin Complex 4.2 LS-CER of Ti(IV)-Tiron Complex. 5. Expanding the scope of the CER to measurement of dissociation kinetics of biomolecular complexes 6. Dissociation kinetic analysis of [SSB-ssDNA] by CER 7. Conclusions 8. References and Notes Chapter 8: Capacitively Coupled Contactless Conductivity Detection (C4D) Applied to Capillary Electrophoresis (CE) and Microchip Electrophoresis (MCE) Jose Alberto Fracassi da Silva, Claudimir Lucio do Lago, Dosil Pereira de Jesus, Wendell Karlos Tomazelli Coltro 1. Introduction 2. Theory of C4D 2.1 Basic principles of C4D 2.2 Simulation 2.3 Basic Equation for Sensitivity 2.4 Equivalent Circuit of a CE-C4D System 2.5 Practical Guidelines 3. C4D Applied to Capillary Electrophoresis 3.1 Ins

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 431,55 PLN
Nasza cena 418,17 PLN
Oszczędzasz 3%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Szczegóły: Capillary Electrophoresis and Microchip Capillary Electrophoresis - Karin Y. Chumbimuni-Torres, Carlos D. Garcia, Emanuel Carrilho

Tytuł: Capillary Electrophoresis and Microchip Capillary Electrophoresis
Autor: Karin Y. Chumbimuni-Torres, Carlos D. Garcia, Emanuel Carrilho
Producent: Blackwell Science
ISBN: 9780470572177
Rok produkcji: 2013
Ilość stron: 416
Oprawa: Twarda
Waga: 1.18 kg


Recenzje: Capillary Electrophoresis and Microchip Capillary Electrophoresis - Karin Y. Chumbimuni-Torres, Carlos D. Garcia, Emanuel Carrilho

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×