Statistical Methods for Handling Missing Data
Wysyłka: Niedostępna
Sugerowana cena detaliczna 299,25 PLN
Nasza cena: 284,89 PLN
Oszczędzasz 4%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów
Opis: Statistical Methods for Handling Missing Data - Jae Kwang Kim, Jun Shao

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data. Suitable for graduate students and researchers in statistics, the book presents thorough treatments of: Statistical theories of likelihood-based inference with missing data Computational techniques and theories on imputation Methods involving propensity score weighting, nonignorable missing data, longitudinal missing data, survey sampling, and statistical matching Assuming prior experience with statistical theory and linear models, the text uses the frequentist framework with less emphasis on Bayesian methods and nonparametric methods. It includes many examples to help readers understand the methodologies. Some of the research ideas introduced can be developed further for specific applications.Introduction Introduction Outline How to Use This Book Likelihood-Based Approach Introduction Observed Likelihood Mean Score Approach Observed Information Computation Introduction Factoring Likelihood Approach EM Algorithm Monte Carlo Computation Monte Carlo EM Data Augmentation Imputation Introduction Basic Theory for Imputation Variance Estimation after Imputation Replication Variance Estimation Multiple Imputation Fractional Imputation Propensity Scoring Approach Introduction Regression Weighting Method Propensity Score Method Optimal Estimation Doubly Robust Method Empirical Likelihood Method Nonparametric Method Nonignorable Missing Data Nonresponse Instrument Conditional Likelihood Approach Generalized Method of Moments (GMM) Approach Pseudo Likelihood Approach Exponential Tilting (ET) Model Latent Variable Approach Callbacks Capture-Recapture (CR) Experiment Longitudinal and Clustered Data Ignorable Missing Data Nonignorable Monotone Missing Data Past-Value-Dependent Missing Data Random-Effect-Dependent Missing Data Application to Survey Sampling Introduction Calibration Estimation Propensity Score Weighting Method Fractional Imputation Fractional Hot Deck Imputation Imputation for Two-Phase Sampling Synthetic Imputation Statistical Matching Introduction Instrumental Variable Approach Measurement Error Models Causal Inference Bibliography Index


Szczegóły: Statistical Methods for Handling Missing Data - Jae Kwang Kim, Jun Shao

Tytuł: Statistical Methods for Handling Missing Data
Autor: Jae Kwang Kim, Jun Shao
Producent: CRC Press Inc.
ISBN: 9781439849637
Rok produkcji: 2013
Ilość stron: 223
Oprawa: Twarda
Waga: 0.51 kg


Recenzje: Statistical Methods for Handling Missing Data - Jae Kwang Kim, Jun Shao
Zaloguj się
Przypomnij hasło
×
×

Statistical Methods for Handling Missing Data

,

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data. Suitable for graduate students and researchers in statistics, the book presents thorough treatments of: Statistical theories of likelihood-based inference with missing data Computational techniques and theories on imputation Methods involving propensity score weighting, nonignorable missing data, longitudinal missing data, survey sampling, and statistical matching Assuming prior experience with statistical theory and linear models, the text uses the frequentist framework with less emphasis on Bayesian methods and nonparametric methods. It includes many examples to help readers understand the methodologies. Some of the research ideas introduced can be developed further for specific applications.Introduction Introduction Outline How to Use This Book Likelihood-Based Approach Introduction Observed Likelihood Mean Score Approach Observed Information Computation Introduction Factoring Likelihood Approach EM Algorithm Monte Carlo Computation Monte Carlo EM Data Augmentation Imputation Introduction Basic Theory for Imputation Variance Estimation after Imputation Replication Variance Estimation Multiple Imputation Fractional Imputation Propensity Scoring Approach Introduction Regression Weighting Method Propensity Score Method Optimal Estimation Doubly Robust Method Empirical Likelihood Method Nonparametric Method Nonignorable Missing Data Nonresponse Instrument Conditional Likelihood Approach Generalized Method of Moments (GMM) Approach Pseudo Likelihood Approach Exponential Tilting (ET) Model Latent Variable Approach Callbacks Capture-Recapture (CR) Experiment Longitudinal and Clustered Data Ignorable Missing Data Nonignorable Monotone Missing Data Past-Value-Dependent Missing Data Random-Effect-Dependent Missing Data Application to Survey Sampling Introduction Calibration Estimation Propensity Score Weighting Method Fractional Imputation Fractional Hot Deck Imputation Imputation for Two-Phase Sampling Synthetic Imputation Statistical Matching Introduction Instrumental Variable Approach Measurement Error Models Causal Inference Bibliography Index

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 299,25 PLN
Nasza cena 284,89 PLN
Oszczędzasz 4%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Szczegóły: Statistical Methods for Handling Missing Data - Jae Kwang Kim, Jun Shao

Tytuł: Statistical Methods for Handling Missing Data
Autor: Jae Kwang Kim, Jun Shao
Producent: CRC Press Inc.
ISBN: 9781439849637
Rok produkcji: 2013
Ilość stron: 223
Oprawa: Twarda
Waga: 0.51 kg


Recenzje: Statistical Methods for Handling Missing Data - Jae Kwang Kim, Jun Shao

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×