Advanced Hierarchical Nanostructured Materials

  • Producent: VCH
  • Oprawa: Twarda
Wysyłka: Niedostępna
Sugerowana cena detaliczna 659,00 PLN
Nasza cena: 616,17 PLN
Oszczędzasz 6%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Advanced Hierarchical Nanostructured Materials

An overview of the recent developments and prospects in this highly topical area, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbons, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.Preface XIII List of Contributors XV 1 Structural Diversity in Ordered Mesoporous Silica Materials 1 Yu Han, Yihan Zhu, and Daliang Zhang 1.1 Introduction 2 1.2 Electron Crystallography and Electron Tomography 8 1.2.1 Electron Crystallography 9 1.2.2 Electron Tomography 11 1.3 Diverse Structures of Ordered Mesoporous Silicas 12 1.3.1 2D Hexagonal Structures with Cylindrical Channels 13 1.3.2 3D Mesoporous Structures with Cage-Type Pores 13 1.3.3 Bi-Continuous Mesoporous Structures 17 1.3.4 Tri-Continuous Mesoporous Structure IBN-9 19 1.3.5 Low-Symmetry Mesoporous Structures 21 1.3.6 Transition and Intergrowth of Different Mesoporous Structures 24 1.4 Outlook 26 References 28 2 Hierarchically Nanostructured Biological Materials 35 Jong Seto, Ashit Rao, and Helmut C¨olfen 2.1 Introduction 35 2.2 "Bottom-Up" Design Scheme 36 2.3 Organic--Inorganic Interfaces 38 2.4 Engineering Principles in Biological Materials 40 2.4.1 Anisotropy 40 2.4.2 Effects of Scaling 41 2.4.3 Organizing Defects and Damage in Biological Materials 43 2.4.4 Mesocrystalline Schemes in Short- to Long-Range Organization 43 2.4.5 Hierarchical Structuring and Its Properties 45 2.5 Model Hierarchical Biological Systems and Materials 47 2.5.1 Nacre 47 2.5.2 Wood 48 2.5.3 Bone 50 2.5.4 Diatoms 52 2.5.5 Butterfly Wings 53 2.5.6 Glass Sponge 55 2.5.7 Adult Sea Urchin Spine 56 2.5.8 Red Coral 57 2.6 Conclusions and Outlook 59 Acknowledgments 59 References 60 3 Use of Magnetic Nanoparticles for the Preparation of Micro- and Nanostructured Materials 71 Marco Furlan and Marco Lattuada 3.1 Introduction 71 3.2 Preparation of Superparamagnetic Nanocolloids 73 3.2.1 Synthesis of Magnetic Nanocrystals 73 3.2.2 Synthesis of Polymer--Magnetic Nanocomposite Particles and Magnetic Nanoclusters 77 3.2.3 Summary 82 3.3 Magnetic Gels 82 3.3.1 Summary 90 3.4 Self-Assembly of Magnetic Nanoparticles, Nanoclusters, and Magnetic--Polymer Nanocomposites 90 3.4.1 Assembly in 1-D Structures 90 3.4.2 Assembly in Higher Dimensional Structures 97 3.4.3 Summary 102 3.5 Magnetic Colloidal Crystals 102 3.5.1 Summary 106 3.6 Concluding Remarks 106 Acknowledgment 107 References 107 4 Hollow Metallic Micro/Nanostructures 119 Juanjuan Qi, Lidong Li, and Lin Guo 4.1 Introduction 119 4.2 Synthetic Methods for 1-D Hollow Metallic Micro/Nanostructures 120 4.2.1 Template-Directed Approach 121 4.2.1.1 Hard Template Methods 121 4.2.1.2 Sacrificial Templates 126 4.2.1.3 Soft Template Methods 131 4.2.2 Template-Free Methods 134 4.2.3 Electrospinning Technique 135 4.3 Synthetic Methods for 3-D or Nonspherical Hollow Metallic Micro/Nanostructures 139 4.3.1 Hard Template Strategy 139 4.3.2 Sacrificial Template Strategy 141 4.3.3 Soft Template Strategy 143 4.3.4 Template-Free Strategy 144 4.3.4.1 Ostwald Ripening 144 4.3.4.2 Kirkendall Effect 146 4.4 Potential Applications of Hollow Metallic Micro/Nanostructures 147 4.4.1 Lithium-Ion Batteries 148 4.4.2 Magnetic Properties 152 4.4.3 Sensors 154 4.4.4 Catalytic Properties 156 4.5 Conclusions and Outlook 160 Acknowledgments 162 References 162 5 Polymer Vesicles 177 Jianzhong Du 5.1 Introduction 177 5.2 Vesicle Formation 178 5.3 Smart Polymer Vesicles 179 5.3.1 pH-Responsive Vesicles 180 5.3.2 Thermoresponsive Vesicles 180 5.3.3 Voltage-Responsive Polymer Vesicles 183 5.3.4 Sugar-Responsive Vesicles 184 5.3.5 Photoresponsive Vesicles 185 5.4 Applications 186 5.5 Summary and Outlook 188 Acknowledgments 189 References 189 6 Helical Nanoarchitecture 193 Meng-Qiang Zhao, Qiang Zhang, and Fei Wei 6.1 Introduction 193 6.2 Fabrication of Organic Helical Nanostructures 194 6.2.1 Helical Micelles from Staggered Stacking 194 6.2.2 Helical Micelle-Like Copolymers 197 6.2.3 Helical Organic Nanostructures by Postsynthetic Processes 198 6.3 Fabrication of Inorganic Helical Nanostructures 199 6.3.1 Templated Methods 199 6.3.1.1 Organic Templates 200 6.3.1.2 Inorganic Templates 204 6.3.1.3 Backfilling of Inorganic Materials 205 6.3.2 Solution-Based Reactions 205 6.3.2.1 Staggered Stacking 206 6.3.2.2 Space Confinement 207 6.3.3 Catalytic Deposition 209 6.3.3.1 Helical Carbon Nanomaterials from Anisotropic Growth Mechanism 209 6.3.3.2 Helical Oxide Nanostructures from Electrostatic Mechanism 214 6.3.3.3 Helical Crystals from Screw-Dislocation-Driven Growth Mechanism 215 6.3.4 Postsynthetic Methods 216 6.3.4.1 Electron Beam Irradiation 216 6.3.4.2 Glancing Angle Deposition 216 6.3.4.3 Untwisting of Nanowires 217 6.3.4.4 Curving of a Double Layer 217 6.3.4.5 Buckling of Nanowires under Confinement 218 6.3.4.6 Tilting of Nanopillars under Capillary Forces 218 6.4 Properties of Helical Nanostructures 220 6.4.1 Mechanical Properties 220 6.4.2 Electromagnetic Properties 220 6.4.3 Optical Properties 221 Summary 222 References 223 7 Hierarchical Layered Double Hydroxide Materials 231 Jingbin Han, Min Wei, David G. Evans, and Xue Duan 7.1 Introduction 231 7.2 Preparation of Hierarchical LDHs 232 7.2.1 LDH-Based Belt/Rod-Like Structures 233 7.2.1.1 Reverse Microemulsion Synthesis 233 7.2.1.2 Topotactic Intercalation 233 7.2.2 LDH-Based Nano/Microspheres 234 7.2.2.1 Sacrificial Template Method 235 7.2.2.2 Spray-Drying Method 238 7.2.3 LDH-Based Core--Shell Structures 238 7.2.3.1 Layer-By-Layer (LBL) Assembly 239 7.2.3.2 Coprecipitation Method 241 7.2.3.3 In Situ Growth 242 7.2.4 LDHs as Substrate to the Growth of Hierarchical Structures 243 7.2.4.1 Solution-Based Chemical Synthesis 244 7.2.4.2 CVD Deposition 244 7.3 Properties of Hierarchical LDHs 247 7.3.1 Hierarchical LDHs as Absorbents 247 7.3.2 Hierarchical LDHs as Catalysts and Supports 250 7.3.3 Hierarchical LDHs as Electrochemical Energy-Storage Materials 253 7.3.3.1 Supercapacitors 253 7.3.3.2 Lithium-Ion Batteries 255 7.3.4 Hierarchical LDHs as Drug-Delivery System 258 7.4 Summary and Outlook 260 Acknowledgments 261 References 261 8 Hierarchically Nanostructured Porous Boron Nitride 267 Philippe Miele, Mikhael Bechelany, and Samuel Bernard 8.1 Introduction 267 8.2 Synthesis of Mesoporous Boron Nitride 268 8.2.1 Exo-Templating Synthesis 269 8.2.2 Endo-Templating Approach 275 8.2.3 Direct Synthesis 276 8.3 Synthesis of Microporous Boron Nitride 277 8.4 Synthesis of Boron Nitride with Hierarchical Porosity 278 8.4.1 Synthesis of HierarchicalMicro- and Meso-porous Boron Nitride 278 8.4.1.1 Non-Template Methods 278 8.4.1.2 Template Methods 279 8.4.2 Synthesis of Hierarchical Macro-, Meso-, and Micro-porous Boron Nitride 281 8.4.2.1 The Structure-Director Route 281 8.4.2.2 Sintering of Powder 282 8.4.2.3 Direct Route 283 8.5 BN Nanosheets (BNNSs) 284 8.6 Conclusion 285 References 287 9 Macroscopic Graphene Structures: Preparation, Properties, and Applications 291 Zhiqiang Niu, Lili Liu, Yueyue Jiang, and Xiaodong Chen 9.1 Introduction 291 9.2 Preparation of Graphene 292 9.3 The Preparation and Properties of Graphene Macroscopic Structures 294 9.3.1 Vacuum Filtering 294 9.3.1.1 Graphene Macroscopic Structures 294 9.3.1.2 Graphene-Based Macroscopic Hybrid Structures 296 9.3.2 Template-Assisted Growth 297 9.3.2.1 Graphene Macroscopic Structures 297 9.3.2.2 Graphene-Based Macroscopic Hybrid Structures 299 9.3.3 Chemical Self-Assembly Method 301 9.3.3.1 Graphene Macroscopic Structures 301 9.3.3.2 Graphene-Based Macroscopic Hybrid Structures 304 9.3.4 Electrophoretic Method 307 9.3.4.1 Graphene Macroscopic Structures 307 9.3.4.2 Graphene-Based Macroscopic Hybrid Structures 309 9.3.5 Layer-by-Layer Method 309 9.3.5.1 Graphene Macroscopic Structures 309 9.3.5.2 Graphene-Based Macroscopic Hybrid Structures 310 9.3.6 Other Methods 313 9.3.6.1 Leavening Strategy 313 9.3.6.2 Centrifugal Evaporation 313 9.3.6.3 Mechanical Cavitation--Chemical Oxidation Approach 315 9.3.6.4 Self-Assembly at a Liquid--Air Interface 315 9.4 Applications of Graphene Macroscopic Structures 316 9.4.1 Energy Storage 316 9.4.1.1 Supercapacitors 316 9.4.1.2 Lithium-Ion Battery 326 9.4.1.3 Hydrogen Storage 328 9.4.2 Selective Absorption 329 9.4.3 Photocatalytic Activities 331 9.4.4 Electrochemical Sensing 332 9.4.5 Actuator 333 9.4.6 Bio-Applications 334 9.5 Conclusions and Outlook 334 References 335 10 Hydrothermal Nanocarbons 351 Maria-Magdalena Titirici 10.1 Introduction 351 10.2 Templating --An Opportunity for Pore Morphology Control 352 10.2.1 Hard Templating in HTC 354 10.2.2 Soft Templating HTC 357 10.2.3 Naturally Inspired Systems: The Use of Natural Templates 363 10.3 Carbon Aerogels 365 10.3.1 Ovalbumin/Glucose-Derived HTC Carbogels 367 10.3.2 Borax-Mediated Formation of HTC Carbogels from Glucose 371 10.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic Compounds 377 10.3.4 Emulsion-Templated "Carbo-HIPEs" from the Hydrothermal Treatment of Sugar Derivatives and Phenolic Compounds 380 10.4 Hydrothermal Carbon Nanocomposites 384 10.4.1 Coating HTC onto Preformed Nanostructures 384 10.4.2 Post-Synthetic Decoration of HTC with Inorganic Nanostructures 386 10.4.3 One-Step HTC Synthetic Method 387 10.4.4 HTC as Sacrificial Templates for Inorganic Porous Materials 391 10.5 Hydrothermal Carbon Quantum Dots 394 10.6 Summary and Outlook 398 References 400 11 Hierarchical Porous Carbon Nanocomposites for Electrochemical Energy Storage 407 Hiesang Sohn, Mikhail L. Gordin, and Donghai Wang 11.1 Introduction 407 11.2 Types of Porous Structures 408 11.2.1 Pore Size 408 11.2.2 Zero-Dimensional Porous Structures 409 11.2.3 One-Dimensional Porous Structures 410 11.2.4 Two-Dimensional Porous Structures 410 11.2.5 Three-Dimensional Porous Structures 410 11.3 Synthesis of Porous Structures 411 11.3.1 Hard Templating 411 11.3.1.1 Inorganic Hard Templating 412 11.3.1.2 Organic Hard Templating 413 11.3.1.3 Other Hard Templating Approaches 414 11.3.2 Soft Templating 415 11.3.2.1 Surfactant-Based Soft Templating 415 11.3.2.2 Emulsion-Based Soft Templating 416 11.3.3 Non-Templating Methods 417 11.3.3.1 Carbon Activation 417 11.3.3.2 Pyrolysis of Porous Carbon Precursors 418 11.3.3.3 Assembly of Porous Structures from Premade Particles 419 11.3.4 Generating the Composite 421 11.3.4.1 Coating and Loading 421 11.3.4.2 In Situ Synthesis 422 11.4 Applications of Hierarchically Porous Carbon Composites 422 11.4.1 Lithium Batteries 422 11.4.1.1 Olivine Cathodes 423 11.4.1.2 Lithium--Sulfur Battery Cathodes 424 11.4.1.3 Carbon Anodes 426 11.4.1.4 Metal Oxide Anodes 426 11.4.1.5 Silicon Anodes 428 11.4.2 Supercapacitors 431 11.4.2.1 Electric Double-Layer Capacitors 432 11.4.2.2 Pseudocapacitors 433 11.5 Summary and Conclusions 435 References 436 12 Hierarchical Design of Porous Carbon Materials for Supercapacitors 443 Da-Wei Wang 12.1 Introduction 443 12.2 Capacitance: Electrostatic Storage 445 12.2.1 Pore Wall Structure 445 12.2.2 Pore Size 448 12.3 Ion Accessibility: Porosity and Surface Wettability 450 12.3.1 Porosity 450 12.3.2 Wettability 456 12.4 Conclusion 456 References 457 13 Nanoscale Functional Polymer Coatings for Biointerface Engineering 461 Hsien-Yeh Chen, Chiao-Tzu Su, and Meng-Yu Tsai 13.1 Introduction 461 13.2 Synthesis of Precursors --Substituted-[2.2]paracyclophanes 462 13.3 Synthesis of Functionalized Poly-p-Xylylenes via CVD Polymerization 464 13.4 Surface Bioconjugate Chemistry by Using Functionalized Poly-p-Xylylenes 466 13.4.1 Poly[(4-Formyl-p-Xylylene)-co-(p-Xylylene)] 466 13.4.2 Poly[(4-Ethynyl-p-Xylylene)-co-(p-Xylylene)] 468 13.4.3 Poly[(4-Aminomethyl-p-Xylylene)-co-(p-Xylylene)] 469 13.4.4 Poly[(4-Benzoyl-p-Xylylene)-co-(p-Xylylene)] 469 13.4.5 Poly[(4-N-Maleimidomethyl-p-Xylylene)-co-(p-Xylylene)] 469 13.4.6 Poly[(Carboxylic Acid Pentafluorophenol Ester-p-Xylylene)-co-(p-Xylylene)] 470 13.4.7 Poly[(4-Hydroxymethyl-p-Xylylene)-co-(p-Xylylene)] 470 13.4.8 Poly[(4-Vinyl-p-Xylylene)-co-(p-Xylylene)] 470 13.5 Multifunctional and Gradient Poly-p-Xylylenes 471 13.6 Outlook 475 References 476 Index 479


Szczegóły: Advanced Hierarchical Nanostructured Materials

Tytuł: Advanced Hierarchical Nanostructured Materials
Producent: VCH
ISBN: 9783527333462
Rok produkcji: 2014
Ilość stron: 512
Oprawa: Twarda
Waga: 1.24 kg


Recenzje: Advanced Hierarchical Nanostructured Materials

Zaloguj się
Przypomnij hasło
×
×

Advanced Hierarchical Nanostructured Materials

  • Producent: VCH
  • Oprawa: Twarda

An overview of the recent developments and prospects in this highly topical area, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbons, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.Preface XIII List of Contributors XV 1 Structural Diversity in Ordered Mesoporous Silica Materials 1 Yu Han, Yihan Zhu, and Daliang Zhang 1.1 Introduction 2 1.2 Electron Crystallography and Electron Tomography 8 1.2.1 Electron Crystallography 9 1.2.2 Electron Tomography 11 1.3 Diverse Structures of Ordered Mesoporous Silicas 12 1.3.1 2D Hexagonal Structures with Cylindrical Channels 13 1.3.2 3D Mesoporous Structures with Cage-Type Pores 13 1.3.3 Bi-Continuous Mesoporous Structures 17 1.3.4 Tri-Continuous Mesoporous Structure IBN-9 19 1.3.5 Low-Symmetry Mesoporous Structures 21 1.3.6 Transition and Intergrowth of Different Mesoporous Structures 24 1.4 Outlook 26 References 28 2 Hierarchically Nanostructured Biological Materials 35 Jong Seto, Ashit Rao, and Helmut C¨olfen 2.1 Introduction 35 2.2 "Bottom-Up" Design Scheme 36 2.3 Organic--Inorganic Interfaces 38 2.4 Engineering Principles in Biological Materials 40 2.4.1 Anisotropy 40 2.4.2 Effects of Scaling 41 2.4.3 Organizing Defects and Damage in Biological Materials 43 2.4.4 Mesocrystalline Schemes in Short- to Long-Range Organization 43 2.4.5 Hierarchical Structuring and Its Properties 45 2.5 Model Hierarchical Biological Systems and Materials 47 2.5.1 Nacre 47 2.5.2 Wood 48 2.5.3 Bone 50 2.5.4 Diatoms 52 2.5.5 Butterfly Wings 53 2.5.6 Glass Sponge 55 2.5.7 Adult Sea Urchin Spine 56 2.5.8 Red Coral 57 2.6 Conclusions and Outlook 59 Acknowledgments 59 References 60 3 Use of Magnetic Nanoparticles for the Preparation of Micro- and Nanostructured Materials 71 Marco Furlan and Marco Lattuada 3.1 Introduction 71 3.2 Preparation of Superparamagnetic Nanocolloids 73 3.2.1 Synthesis of Magnetic Nanocrystals 73 3.2.2 Synthesis of Polymer--Magnetic Nanocomposite Particles and Magnetic Nanoclusters 77 3.2.3 Summary 82 3.3 Magnetic Gels 82 3.3.1 Summary 90 3.4 Self-Assembly of Magnetic Nanoparticles, Nanoclusters, and Magnetic--Polymer Nanocomposites 90 3.4.1 Assembly in 1-D Structures 90 3.4.2 Assembly in Higher Dimensional Structures 97 3.4.3 Summary 102 3.5 Magnetic Colloidal Crystals 102 3.5.1 Summary 106 3.6 Concluding Remarks 106 Acknowledgment 107 References 107 4 Hollow Metallic Micro/Nanostructures 119 Juanjuan Qi, Lidong Li, and Lin Guo 4.1 Introduction 119 4.2 Synthetic Methods for 1-D Hollow Metallic Micro/Nanostructures 120 4.2.1 Template-Directed Approach 121 4.2.1.1 Hard Template Methods 121 4.2.1.2 Sacrificial Templates 126 4.2.1.3 Soft Template Methods 131 4.2.2 Template-Free Methods 134 4.2.3 Electrospinning Technique 135 4.3 Synthetic Methods for 3-D or Nonspherical Hollow Metallic Micro/Nanostructures 139 4.3.1 Hard Template Strategy 139 4.3.2 Sacrificial Template Strategy 141 4.3.3 Soft Template Strategy 143 4.3.4 Template-Free Strategy 144 4.3.4.1 Ostwald Ripening 144 4.3.4.2 Kirkendall Effect 146 4.4 Potential Applications of Hollow Metallic Micro/Nanostructures 147 4.4.1 Lithium-Ion Batteries 148 4.4.2 Magnetic Properties 152 4.4.3 Sensors 154 4.4.4 Catalytic Properties 156 4.5 Conclusions and Outlook 160 Acknowledgments 162 References 162 5 Polymer Vesicles 177 Jianzhong Du 5.1 Introduction 177 5.2 Vesicle Formation 178 5.3 Smart Polymer Vesicles 179 5.3.1 pH-Responsive Vesicles 180 5.3.2 Thermoresponsive Vesicles 180 5.3.3 Voltage-Responsive Polymer Vesicles 183 5.3.4 Sugar-Responsive Vesicles 184 5.3.5 Photoresponsive Vesicles 185 5.4 Applications 186 5.5 Summary and Outlook 188 Acknowledgments 189 References 189 6 Helical Nanoarchitecture 193 Meng-Qiang Zhao, Qiang Zhang, and Fei Wei 6.1 Introduction 193 6.2 Fabrication of Organic Helical Nanostructures 194 6.2.1 Helical Micelles from Staggered Stacking 194 6.2.2 Helical Micelle-Like Copolymers 197 6.2.3 Helical Organic Nanostructures by Postsynthetic Processes 198 6.3 Fabrication of Inorganic Helical Nanostructures 199 6.3.1 Templated Methods 199 6.3.1.1 Organic Templates 200 6.3.1.2 Inorganic Templates 204 6.3.1.3 Backfilling of Inorganic Materials 205 6.3.2 Solution-Based Reactions 205 6.3.2.1 Staggered Stacking 206 6.3.2.2 Space Confinement 207 6.3.3 Catalytic Deposition 209 6.3.3.1 Helical Carbon Nanomaterials from Anisotropic Growth Mechanism 209 6.3.3.2 Helical Oxide Nanostructures from Electrostatic Mechanism 214 6.3.3.3 Helical Crystals from Screw-Dislocation-Driven Growth Mechanism 215 6.3.4 Postsynthetic Methods 216 6.3.4.1 Electron Beam Irradiation 216 6.3.4.2 Glancing Angle Deposition 216 6.3.4.3 Untwisting of Nanowires 217 6.3.4.4 Curving of a Double Layer 217 6.3.4.5 Buckling of Nanowires under Confinement 218 6.3.4.6 Tilting of Nanopillars under Capillary Forces 218 6.4 Properties of Helical Nanostructures 220 6.4.1 Mechanical Properties 220 6.4.2 Electromagnetic Properties 220 6.4.3 Optical Properties 221 Summary 222 References 223 7 Hierarchical Layered Double Hydroxide Materials 231 Jingbin Han, Min Wei, David G. Evans, and Xue Duan 7.1 Introduction 231 7.2 Preparation of Hierarchical LDHs 232 7.2.1 LDH-Based Belt/Rod-Like Structures 233 7.2.1.1 Reverse Microemulsion Synthesis 233 7.2.1.2 Topotactic Intercalation 233 7.2.2 LDH-Based Nano/Microspheres 234 7.2.2.1 Sacrificial Template Method 235 7.2.2.2 Spray-Drying Method 238 7.2.3 LDH-Based Core--Shell Structures 238 7.2.3.1 Layer-By-Layer (LBL) Assembly 239 7.2.3.2 Coprecipitation Method 241 7.2.3.3 In Situ Growth 242 7.2.4 LDHs as Substrate to the Growth of Hierarchical Structures 243 7.2.4.1 Solution-Based Chemical Synthesis 244 7.2.4.2 CVD Deposition 244 7.3 Properties of Hierarchical LDHs 247 7.3.1 Hierarchical LDHs as Absorbents 247 7.3.2 Hierarchical LDHs as Catalysts and Supports 250 7.3.3 Hierarchical LDHs as Electrochemical Energy-Storage Materials 253 7.3.3.1 Supercapacitors 253 7.3.3.2 Lithium-Ion Batteries 255 7.3.4 Hierarchical LDHs as Drug-Delivery System 258 7.4 Summary and Outlook 260 Acknowledgments 261 References 261 8 Hierarchically Nanostructured Porous Boron Nitride 267 Philippe Miele, Mikhael Bechelany, and Samuel Bernard 8.1 Introduction 267 8.2 Synthesis of Mesoporous Boron Nitride 268 8.2.1 Exo-Templating Synthesis 269 8.2.2 Endo-Templating Approach 275 8.2.3 Direct Synthesis 276 8.3 Synthesis of Microporous Boron Nitride 277 8.4 Synthesis of Boron Nitride with Hierarchical Porosity 278 8.4.1 Synthesis of HierarchicalMicro- and Meso-porous Boron Nitride 278 8.4.1.1 Non-Template Methods 278 8.4.1.2 Template Methods 279 8.4.2 Synthesis of Hierarchical Macro-, Meso-, and Micro-porous Boron Nitride 281 8.4.2.1 The Structure-Director Route 281 8.4.2.2 Sintering of Powder 282 8.4.2.3 Direct Route 283 8.5 BN Nanosheets (BNNSs) 284 8.6 Conclusion 285 References 287 9 Macroscopic Graphene Structures: Preparation, Properties, and Applications 291 Zhiqiang Niu, Lili Liu, Yueyue Jiang, and Xiaodong Chen 9.1 Introduction 291 9.2 Preparation of Graphene 292 9.3 The Preparation and Properties of Graphene Macroscopic Structures 294 9.3.1 Vacuum Filtering 294 9.3.1.1 Graphene Macroscopic Structures 294 9.3.1.2 Graphene-Based Macroscopic Hybrid Structures 296 9.3.2 Template-Assisted Growth 297 9.3.2.1 Graphene Macroscopic Structures 297 9.3.2.2 Graphene-Based Macroscopic Hybrid Structures 299 9.3.3 Chemical Self-Assembly Method 301 9.3.3.1 Graphene Macroscopic Structures 301 9.3.3.2 Graphene-Based Macroscopic Hybrid Structures 304 9.3.4 Electrophoretic Method 307 9.3.4.1 Graphene Macroscopic Structures 307 9.3.4.2 Graphene-Based Macroscopic Hybrid Structures 309 9.3.5 Layer-by-Layer Method 309 9.3.5.1 Graphene Macroscopic Structures 309 9.3.5.2 Graphene-Based Macroscopic Hybrid Structures 310 9.3.6 Other Methods 313 9.3.6.1 Leavening Strategy 313 9.3.6.2 Centrifugal Evaporation 313 9.3.6.3 Mechanical Cavitation--Chemical Oxidation Approach 315 9.3.6.4 Self-Assembly at a Liquid--Air Interface 315 9.4 Applications of Graphene Macroscopic Structures 316 9.4.1 Energy Storage 316 9.4.1.1 Supercapacitors 316 9.4.1.2 Lithium-Ion Battery 326 9.4.1.3 Hydrogen Storage 328 9.4.2 Selective Absorption 329 9.4.3 Photocatalytic Activities 331 9.4.4 Electrochemical Sensing 332 9.4.5 Actuator 333 9.4.6 Bio-Applications 334 9.5 Conclusions and Outlook 334 References 335 10 Hydrothermal Nanocarbons 351 Maria-Magdalena Titirici 10.1 Introduction 351 10.2 Templating --An Opportunity for Pore Morphology Control 352 10.2.1 Hard Templating in HTC 354 10.2.2 Soft Templating HTC 357 10.2.3 Naturally Inspired Systems: The Use of Natural Templates 363 10.3 Carbon Aerogels 365 10.3.1 Ovalbumin/Glucose-Derived HTC Carbogels 367 10.3.2 Borax-Mediated Formation of HTC Carbogels from Glucose 371 10.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic Compounds 377 10.3.4 Emulsion-Templated "Carbo-HIPEs" from the Hydrothermal Treatment of Sugar Derivatives and Phenolic Compounds 380 10.4 Hydrothermal Carbon Nanocomposites 384 10.4.1 Coating HTC onto Preformed Nanostructures 384 10.4.2 Post-Synthetic Decoration of HTC with Inorganic Nanostructures 386 10.4.3 One-Step HTC Synthetic Method 387 10.4.4 HTC as Sacrificial Templates for Inorganic Porous Materials 391 10.5 Hydrothermal Carbon Quantum Dots 394 10.6 Summary and Outlook 398 References 400 11 Hierarchical Porous Carbon Nanocomposites for Electrochemical Energy Storage 407 Hiesang Sohn, Mikhail L. Gordin, and Donghai Wang 11.1 Introduction 407 11.2 Types of Porous Structures 408 11.2.1 Pore Size 408 11.2.2 Zero-Dimensional Porous Structures 409 11.2.3 One-Dimensional Porous Structures 410 11.2.4 Two-Dimensional Porous Structures 410 11.2.5 Three-Dimensional Porous Structures 410 11.3 Synthesis of Porous Structures 411 11.3.1 Hard Templating 411 11.3.1.1 Inorganic Hard Templating 412 11.3.1.2 Organic Hard Templating 413 11.3.1.3 Other Hard Templating Approaches 414 11.3.2 Soft Templating 415 11.3.2.1 Surfactant-Based Soft Templating 415 11.3.2.2 Emulsion-Based Soft Templating 416 11.3.3 Non-Templating Methods 417 11.3.3.1 Carbon Activation 417 11.3.3.2 Pyrolysis of Porous Carbon Precursors 418 11.3.3.3 Assembly of Porous Structures from Premade Particles 419 11.3.4 Generating the Composite 421 11.3.4.1 Coating and Loading 421 11.3.4.2 In Situ Synthesis 422 11.4 Applications of Hierarchically Porous Carbon Composites 422 11.4.1 Lithium Batteries 422 11.4.1.1 Olivine Cathodes 423 11.4.1.2 Lithium--Sulfur Battery Cathodes 424 11.4.1.3 Carbon Anodes 426 11.4.1.4 Metal Oxide Anodes 426 11.4.1.5 Silicon Anodes 428 11.4.2 Supercapacitors 431 11.4.2.1 Electric Double-Layer Capacitors 432 11.4.2.2 Pseudocapacitors 433 11.5 Summary and Conclusions 435 References 436 12 Hierarchical Design of Porous Carbon Materials for Supercapacitors 443 Da-Wei Wang 12.1 Introduction 443 12.2 Capacitance: Electrostatic Storage 445 12.2.1 Pore Wall Structure 445 12.2.2 Pore Size 448 12.3 Ion Accessibility: Porosity and Surface Wettability 450 12.3.1 Porosity 450 12.3.2 Wettability 456 12.4 Conclusion 456 References 457 13 Nanoscale Functional Polymer Coatings for Biointerface Engineering 461 Hsien-Yeh Chen, Chiao-Tzu Su, and Meng-Yu Tsai 13.1 Introduction 461 13.2 Synthesis of Precursors --Substituted-[2.2]paracyclophanes 462 13.3 Synthesis of Functionalized Poly-p-Xylylenes via CVD Polymerization 464 13.4 Surface Bioconjugate Chemistry by Using Functionalized Poly-p-Xylylenes 466 13.4.1 Poly[(4-Formyl-p-Xylylene)-co-(p-Xylylene)] 466 13.4.2 Poly[(4-Ethynyl-p-Xylylene)-co-(p-Xylylene)] 468 13.4.3 Poly[(4-Aminomethyl-p-Xylylene)-co-(p-Xylylene)] 469 13.4.4 Poly[(4-Benzoyl-p-Xylylene)-co-(p-Xylylene)] 469 13.4.5 Poly[(4-N-Maleimidomethyl-p-Xylylene)-co-(p-Xylylene)] 469 13.4.6 Poly[(Carboxylic Acid Pentafluorophenol Ester-p-Xylylene)-co-(p-Xylylene)] 470 13.4.7 Poly[(4-Hydroxymethyl-p-Xylylene)-co-(p-Xylylene)] 470 13.4.8 Poly[(4-Vinyl-p-Xylylene)-co-(p-Xylylene)] 470 13.5 Multifunctional and Gradient Poly-p-Xylylenes 471 13.6 Outlook 475 References 476 Index 479

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 659,00 PLN
Nasza cena 616,17 PLN
Oszczędzasz 6%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Szczegóły: Advanced Hierarchical Nanostructured Materials

Tytuł: Advanced Hierarchical Nanostructured Materials
Producent: VCH
ISBN: 9783527333462
Rok produkcji: 2014
Ilość stron: 512
Oprawa: Twarda
Waga: 1.24 kg


Recenzje: Advanced Hierarchical Nanostructured Materials

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×