Categorical Homotopy Theory

Wysyłka: Niedostępna
Sugerowana cena detaliczna 358,00 PLN
Nasza cena: 334,73 PLN
Oszczędzasz 6%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Categorical Homotopy Theory - Emily Riehl

This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.Part I. Derived Functors and Homotopy (Co)limits: 1. All concepts are Kan extensions; 2. Derived functors via deformations; 3. Basic concepts of enriched category theory; 4. The unreasonably effective (co)bar construction; 5. Homotopy limits and colimits: the theory; 6. Homotopy limits and colimits: the practice; Part II. Enriched Homotopy Theory: 7. Weighted limits and colimits; 8. Categorical tools for homotopy (co)limit computations; 9. Weighted homotopy limits and colimits; 10. Derived enrichment; Part III. Model Categories and Weak Factorization Systems: 11. Weak factorization systems in model categories; 12. Algebraic perspectives on the small object argument; 13. Enriched factorizations and enriched lifting properties; 14. A brief tour of Reedy category theory; Part IV. Quasi-Categories: 15. Preliminaries on quasi-categories; 16. Simplicial categories and homotopy coherence; 17. Isomorphisms in quasi-categories; 18. A sampling of 2-categorical aspects of quasi-category theory.


Szczegóły: Categorical Homotopy Theory - Emily Riehl

Tytuł: Categorical Homotopy Theory
Autor: Emily Riehl
Producent: Cambridge University Press
ISBN: 9781107048454
Rok produkcji: 2014
Ilość stron: 352
Oprawa: Twarda
Waga: 0.63 kg


Recenzje: Categorical Homotopy Theory - Emily Riehl

Zaloguj się
Przypomnij hasło
×
×

Categorical Homotopy Theory

This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.Part I. Derived Functors and Homotopy (Co)limits: 1. All concepts are Kan extensions; 2. Derived functors via deformations; 3. Basic concepts of enriched category theory; 4. The unreasonably effective (co)bar construction; 5. Homotopy limits and colimits: the theory; 6. Homotopy limits and colimits: the practice; Part II. Enriched Homotopy Theory: 7. Weighted limits and colimits; 8. Categorical tools for homotopy (co)limit computations; 9. Weighted homotopy limits and colimits; 10. Derived enrichment; Part III. Model Categories and Weak Factorization Systems: 11. Weak factorization systems in model categories; 12. Algebraic perspectives on the small object argument; 13. Enriched factorizations and enriched lifting properties; 14. A brief tour of Reedy category theory; Part IV. Quasi-Categories: 15. Preliminaries on quasi-categories; 16. Simplicial categories and homotopy coherence; 17. Isomorphisms in quasi-categories; 18. A sampling of 2-categorical aspects of quasi-category theory.

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 358,00 PLN
Nasza cena 334,73 PLN
Oszczędzasz 6%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Szczegóły: Categorical Homotopy Theory - Emily Riehl

Tytuł: Categorical Homotopy Theory
Autor: Emily Riehl
Producent: Cambridge University Press
ISBN: 9781107048454
Rok produkcji: 2014
Ilość stron: 352
Oprawa: Twarda
Waga: 0.63 kg


Recenzje: Categorical Homotopy Theory - Emily Riehl

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×