Advanced Electric Drives

Wysyłka: Niedostępna
Sugerowana cena detaliczna 462,00 PLN
Nasza cena: 431,97 PLN
Oszczędzasz 6%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Advanced Electric Drives - Ned Mohan

Electric drives in sustainable energy systems use a physics-based approach to electric drive control. The proper control of electric motors and systems represents significant energy savings and has applications in factory automation, clean transportation, and renewable energy resource management. Adopting a physics-based approach to the dq-axis transformation of a-b-c phase quantities, this book provides a comprehensive explanation of how electric drives operate under dynamic conditions. It features in-class discussion problems, a hardware and software lab with solutions manual, online homework problems, video clips and slides, and quizzes to reinforce fundamentals.Preface xiii Notation xv 1 Applications: Speed and Torque Control 1 1-1 History 1 1-2 Background 2 1-3 Types of ac Drives Discussed and the Simulation Software 2 1-4 Structure of this Textbook 3 1-5 "Test" Induction Motor 3 1-6 Summary 4 References 4 Problems 4 2 Induction Machine Equations in Phase Quantities: Assisted by Space Vectors 6 2-1 Introduction 6 2-2 Sinusoidally Distributed Stator Windings 6 2-2-1 Three-Phase, Sinusoidally Distributed Stator Windings 8 2-3 Stator Inductances (Rotor Open-Circuited) 9 2-3-1 Stator Single-Phase Magnetizing Inductance L m ,1-phase 9 2-3-2 Stator Mutual-Inductance L mutual 11 2-3-3 Per-Phase Magnetizing-Inductance L m 12 2-3-4 Stator-Inductance L s 12 2-4 Equivalent Windings in a Squirrel-Cage Rotor 13 2-4-1 Rotor-Winding Inductances (Stator Open-Circuited) 13 2-5 Mutual Inductances between the Stator and the Rotor Phase Windings 15 2-6 Review of Space Vectors 15 2-6-1 Relationship between Phasors and Space Vectors in Sinusoidal Steady State 17 2-7 Flux Linkages 18 2-7-1 Stator Flux Linkage (Rotor Open-Circuited) 18 2-7-2 Rotor Flux Linkage (Stator Open-Circuited) 19 2-7-3 Stator and Rotor Flux Linkages (Simultaneous Stator and Rotor Currents) 20 2-8 Stator and Rotor Voltage Equations in Terms of Space Vectors 21 2-9 Making the Case for a dq -Winding Analysis 22 2-10 Summary 25 Reference 25 Problems 26 3 Dynamic Analysis of Induction Machines in Terms of dq Windings 28 3-1 Introduction 28 3-2 dq Winding Representation 28 3-2-1 Stator dq Winding Representation 29 3-2-2 Rotor dq Windings (Along the Same dq-Axes as in the Stator) 31 3-2-3 Mutual Inductance between dq Windings on the Stator and the Rotor 32 3-3 Mathematical Relationships of the dq Windings (at an Arbitrary Speed omega d ) 33 3-3-1 Relating dq Winding Variables to Phase Winding Variables 35 3-3-2 Flux Linkages of dq Windings in Terms of Their Currents 36 3-3-3 dq Winding Voltage Equations 37 3-3-4 Obtaining Fluxes and Currents with Voltages as Inputs 40 3-4 Choice of the dq Winding Speed omega d 41 3-5 Electromagnetic Torque 42 3-5-1 Torque on the Rotor d -Axis Winding 42 3-5-2 Torque on the Rotor q -Axis Winding 43 3-5-3 Net Electromagnetic Torque T em on the Rotor 44 3-6 Electrodynamics 44 3-7 d - and q -Axis Equivalent Circuits 45 3-8 Relationship between the dq Windings and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 46 3-9 Computer Simulation 47 3-9-1 Calculation of Initial Conditions 48 3-10 Summary 56 Reference 56 Problems 57 4 Vector Control of Induction-Motor Drives: A Qualitative Examination 59 4-1 Introduction 59 4-2 Emulation of dc and Brushless dc Drive Performance 59 4-2-1 Vector Control of Induction-Motor Drives 61 4-3 Analogy to a Current-Excited Transformer with a Shorted Secondary 62 4-3-1 Using the Transformer Equivalent Circuit 65 4-4 d - and q -Axis Winding Representation 66 4-5 Vector Control with d -Axis Aligned with the Rotor Flux 67 4-5-1 Initial Flux Buildup Prior to t = 0-67 4-5-2 Step Change in Torque at t = 0+68 4-6 Torque, Speed, and Position Control 72 4-6-1 The Reference Current isq t ( ) 72 4-6-2 The Reference Current isd t ( ) 73 4-6-3 Transformation and Inverse-Transformation of Stator Currents 73 4-6-4 The Estimated Motor Model for Vector Control 74 4-7 The Power-Processing Unit (PPU) 75 4-8 Summary 76 References 76 Problems 77 5 Mathematical Description of Vector Control in Induction Machines 79 5-1 Motor Model with the d -Axis Aligned Along the Rotor Flux Linkage lambda r -Axis 79 5-1-1 Calculation of omega dA 81 5-1-2 Calculation of T em 81 5-1-3 d -Axis Rotor Flux Linkage Dynamics 82 5-1-4 Motor Model 82 5-2 Vector Control 84 5-2-1 Speed and Position Control Loops 86 5-2-2 Initial Startup 89 5-2-3 Calculating the Stator Voltages to Be Applied 89 5-2-4 Designing the PI Controllers 90 5-3 Summary 95 Reference 95 Problems 95 6 Detuning Effects in Induction Motor Vector Control 97 6-1 Effect of Detuning Due to Incorrect Rotor Time Constant tau r 97 6-2 Steady-State Analysis 101 6-2-1 Steady-State i sd / i s d 104 6-2-2 Steady-State i sq / i s q 104 6-2-3 Steady-State theta err 105 6-2-4 Steady-State T em / T e m 106 6-3 Summary 107 References 107 Problems 108 7 Dynamic Analysis of Doubly Fed Induction Generators and Their Vector Control 109 7-1 Understanding DFIG Operation 110 7-2 Dynamic Analysis of DFIG 116 7-3 Vector Control of DFIG 116 7-4 Summary 117 References 117 Problems 117 8 Space Vector Pulse Width-Modulated (SV-PWM) Inverters 119 8-1 Introduction 119 8-2 Synthesis of Stator Voltage Space Vector vsa 119 8-3 Computer Simulation of SV-PWM Inverter 124 8-4 Limit on the Amplitude V s of the Stator Voltage Space Vectov sa 125 Summary 128 References 128 Problems 129 9 Direct Torque Control (DTC) and Encoderless Operation of Induction Motor Drives 130 9-1 Introduction 130 9-2 System Overview 130 9-3 Principle of Encoderless DTC Operation 131 9-4 Calculation of lambda s , lambda r , T em , and omega m 132 9-4-1 Calculation of the Stator Flux lambda s 132 9-4-2 Calculation of the Rotor Flux lambda r 133 9-4-3 Calculation of the Electromagnetic Torque T em 134 9-4-4 Calculation of the Rotor Speed omega m 135 9-5 Calculation of the Stator Voltage Space Vector 136 9-6 Direct Torque Control Using dq -Axes 139 9-7 Summary 139 References 139 Problems 139 Appendix 9-A 140 Derivation of Torque Expressions 140 10 Vector Control of Permanent-Magnet Synchronous Motor Drives 143 10-1 Introduction 143 10-2 d-q Analysis of Permanent Magnet (Nonsalient-Pole) Synchronous Machines 143 10-2-1 Flux Linkages 144 10-2-2 Stator dq Winding Voltages 144 10-2-3 Electromagnetic Torque 145 10-2-4 Electrodynamics 145 10-2-5 Relationship between the dq Circuits and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 145 10-2-6 dq -Based Dynamic Controller for "Brushless DC" Drives 147 10-3 Salient-Pole Synchronous Machines 151 10-3-1 Inductances 152 10-3-2 Flux Linkages 153 10-3-3 Winding Voltages 153 10-3-4 Electromagnetic Torque 154 10-3-5 dq -Axis Equivalent Circuits 154 10-3-6 Space Vector Diagram in Steady State 154 10-4 Summary 156 References 156 Problems 156 11 Switched-Reluctance Motor (SRM) Drives 157 11-1 Introduction 157 11-2 Switched-Reluctance Motor 157 11-2-1 Electromagnetic Torque T em 159 11-2-2 Induced Back-EMF e a 161 11-3 Instantaneous Waveforms 162 11-4 Role of Magnetic Saturation 164 11-5 Power Processing Units for SRM Drives 165 11-6 Determining the Rotor Position for Encoderles Operation 166 11-7 Control in Motoring Mode 166 11-8 Summary 167 References 167 Problems 167 Index 169


Szczegóły: Advanced Electric Drives - Ned Mohan

Tytuł: Advanced Electric Drives
Autor: Ned Mohan
Producent: John Wiley
ISBN: 9781118485484
Rok produkcji: 2014
Ilość stron: 208
Oprawa: Twarda
Waga: 0.48 kg


Recenzje: Advanced Electric Drives - Ned Mohan

Zaloguj się
Przypomnij hasło
×
×

Advanced Electric Drives

Electric drives in sustainable energy systems use a physics-based approach to electric drive control. The proper control of electric motors and systems represents significant energy savings and has applications in factory automation, clean transportation, and renewable energy resource management. Adopting a physics-based approach to the dq-axis transformation of a-b-c phase quantities, this book provides a comprehensive explanation of how electric drives operate under dynamic conditions. It features in-class discussion problems, a hardware and software lab with solutions manual, online homework problems, video clips and slides, and quizzes to reinforce fundamentals.Preface xiii Notation xv 1 Applications: Speed and Torque Control 1 1-1 History 1 1-2 Background 2 1-3 Types of ac Drives Discussed and the Simulation Software 2 1-4 Structure of this Textbook 3 1-5 "Test" Induction Motor 3 1-6 Summary 4 References 4 Problems 4 2 Induction Machine Equations in Phase Quantities: Assisted by Space Vectors 6 2-1 Introduction 6 2-2 Sinusoidally Distributed Stator Windings 6 2-2-1 Three-Phase, Sinusoidally Distributed Stator Windings 8 2-3 Stator Inductances (Rotor Open-Circuited) 9 2-3-1 Stator Single-Phase Magnetizing Inductance L m ,1-phase 9 2-3-2 Stator Mutual-Inductance L mutual 11 2-3-3 Per-Phase Magnetizing-Inductance L m 12 2-3-4 Stator-Inductance L s 12 2-4 Equivalent Windings in a Squirrel-Cage Rotor 13 2-4-1 Rotor-Winding Inductances (Stator Open-Circuited) 13 2-5 Mutual Inductances between the Stator and the Rotor Phase Windings 15 2-6 Review of Space Vectors 15 2-6-1 Relationship between Phasors and Space Vectors in Sinusoidal Steady State 17 2-7 Flux Linkages 18 2-7-1 Stator Flux Linkage (Rotor Open-Circuited) 18 2-7-2 Rotor Flux Linkage (Stator Open-Circuited) 19 2-7-3 Stator and Rotor Flux Linkages (Simultaneous Stator and Rotor Currents) 20 2-8 Stator and Rotor Voltage Equations in Terms of Space Vectors 21 2-9 Making the Case for a dq -Winding Analysis 22 2-10 Summary 25 Reference 25 Problems 26 3 Dynamic Analysis of Induction Machines in Terms of dq Windings 28 3-1 Introduction 28 3-2 dq Winding Representation 28 3-2-1 Stator dq Winding Representation 29 3-2-2 Rotor dq Windings (Along the Same dq-Axes as in the Stator) 31 3-2-3 Mutual Inductance between dq Windings on the Stator and the Rotor 32 3-3 Mathematical Relationships of the dq Windings (at an Arbitrary Speed omega d ) 33 3-3-1 Relating dq Winding Variables to Phase Winding Variables 35 3-3-2 Flux Linkages of dq Windings in Terms of Their Currents 36 3-3-3 dq Winding Voltage Equations 37 3-3-4 Obtaining Fluxes and Currents with Voltages as Inputs 40 3-4 Choice of the dq Winding Speed omega d 41 3-5 Electromagnetic Torque 42 3-5-1 Torque on the Rotor d -Axis Winding 42 3-5-2 Torque on the Rotor q -Axis Winding 43 3-5-3 Net Electromagnetic Torque T em on the Rotor 44 3-6 Electrodynamics 44 3-7 d - and q -Axis Equivalent Circuits 45 3-8 Relationship between the dq Windings and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 46 3-9 Computer Simulation 47 3-9-1 Calculation of Initial Conditions 48 3-10 Summary 56 Reference 56 Problems 57 4 Vector Control of Induction-Motor Drives: A Qualitative Examination 59 4-1 Introduction 59 4-2 Emulation of dc and Brushless dc Drive Performance 59 4-2-1 Vector Control of Induction-Motor Drives 61 4-3 Analogy to a Current-Excited Transformer with a Shorted Secondary 62 4-3-1 Using the Transformer Equivalent Circuit 65 4-4 d - and q -Axis Winding Representation 66 4-5 Vector Control with d -Axis Aligned with the Rotor Flux 67 4-5-1 Initial Flux Buildup Prior to t = 0-67 4-5-2 Step Change in Torque at t = 0+68 4-6 Torque, Speed, and Position Control 72 4-6-1 The Reference Current isq t ( ) 72 4-6-2 The Reference Current isd t ( ) 73 4-6-3 Transformation and Inverse-Transformation of Stator Currents 73 4-6-4 The Estimated Motor Model for Vector Control 74 4-7 The Power-Processing Unit (PPU) 75 4-8 Summary 76 References 76 Problems 77 5 Mathematical Description of Vector Control in Induction Machines 79 5-1 Motor Model with the d -Axis Aligned Along the Rotor Flux Linkage lambda r -Axis 79 5-1-1 Calculation of omega dA 81 5-1-2 Calculation of T em 81 5-1-3 d -Axis Rotor Flux Linkage Dynamics 82 5-1-4 Motor Model 82 5-2 Vector Control 84 5-2-1 Speed and Position Control Loops 86 5-2-2 Initial Startup 89 5-2-3 Calculating the Stator Voltages to Be Applied 89 5-2-4 Designing the PI Controllers 90 5-3 Summary 95 Reference 95 Problems 95 6 Detuning Effects in Induction Motor Vector Control 97 6-1 Effect of Detuning Due to Incorrect Rotor Time Constant tau r 97 6-2 Steady-State Analysis 101 6-2-1 Steady-State i sd / i s d 104 6-2-2 Steady-State i sq / i s q 104 6-2-3 Steady-State theta err 105 6-2-4 Steady-State T em / T e m 106 6-3 Summary 107 References 107 Problems 108 7 Dynamic Analysis of Doubly Fed Induction Generators and Their Vector Control 109 7-1 Understanding DFIG Operation 110 7-2 Dynamic Analysis of DFIG 116 7-3 Vector Control of DFIG 116 7-4 Summary 117 References 117 Problems 117 8 Space Vector Pulse Width-Modulated (SV-PWM) Inverters 119 8-1 Introduction 119 8-2 Synthesis of Stator Voltage Space Vector vsa 119 8-3 Computer Simulation of SV-PWM Inverter 124 8-4 Limit on the Amplitude V s of the Stator Voltage Space Vectov sa 125 Summary 128 References 128 Problems 129 9 Direct Torque Control (DTC) and Encoderless Operation of Induction Motor Drives 130 9-1 Introduction 130 9-2 System Overview 130 9-3 Principle of Encoderless DTC Operation 131 9-4 Calculation of lambda s , lambda r , T em , and omega m 132 9-4-1 Calculation of the Stator Flux lambda s 132 9-4-2 Calculation of the Rotor Flux lambda r 133 9-4-3 Calculation of the Electromagnetic Torque T em 134 9-4-4 Calculation of the Rotor Speed omega m 135 9-5 Calculation of the Stator Voltage Space Vector 136 9-6 Direct Torque Control Using dq -Axes 139 9-7 Summary 139 References 139 Problems 139 Appendix 9-A 140 Derivation of Torque Expressions 140 10 Vector Control of Permanent-Magnet Synchronous Motor Drives 143 10-1 Introduction 143 10-2 d-q Analysis of Permanent Magnet (Nonsalient-Pole) Synchronous Machines 143 10-2-1 Flux Linkages 144 10-2-2 Stator dq Winding Voltages 144 10-2-3 Electromagnetic Torque 145 10-2-4 Electrodynamics 145 10-2-5 Relationship between the dq Circuits and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 145 10-2-6 dq -Based Dynamic Controller for "Brushless DC" Drives 147 10-3 Salient-Pole Synchronous Machines 151 10-3-1 Inductances 152 10-3-2 Flux Linkages 153 10-3-3 Winding Voltages 153 10-3-4 Electromagnetic Torque 154 10-3-5 dq -Axis Equivalent Circuits 154 10-3-6 Space Vector Diagram in Steady State 154 10-4 Summary 156 References 156 Problems 156 11 Switched-Reluctance Motor (SRM) Drives 157 11-1 Introduction 157 11-2 Switched-Reluctance Motor 157 11-2-1 Electromagnetic Torque T em 159 11-2-2 Induced Back-EMF e a 161 11-3 Instantaneous Waveforms 162 11-4 Role of Magnetic Saturation 164 11-5 Power Processing Units for SRM Drives 165 11-6 Determining the Rotor Position for Encoderles Operation 166 11-7 Control in Motoring Mode 166 11-8 Summary 167 References 167 Problems 167 Index 169

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 462,00 PLN
Nasza cena 431,97 PLN
Oszczędzasz 6%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Szczegóły: Advanced Electric Drives - Ned Mohan

Tytuł: Advanced Electric Drives
Autor: Ned Mohan
Producent: John Wiley
ISBN: 9781118485484
Rok produkcji: 2014
Ilość stron: 208
Oprawa: Twarda
Waga: 0.48 kg


Recenzje: Advanced Electric Drives - Ned Mohan

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×