Geometric Invariant Theory for Polarized Curves

, ,

Wysyłka: Niedostępna
Sugerowana cena detaliczna 153,00 PLN
Nasza cena: 145,66 PLN
Oszczędzasz 4%
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Darmowa dostawa
Oferujemy szeroki asortyment - ponad 120 tys. produktów
Dysponujemy solidną wiedzą - działamy już 11 lat
Dbamy o wybór najcenniejszych tytułów

Opis: Geometric Invariant Theory for Polarized Curves - Filippo Viviani, Margarida Melo, Fabio Felici

We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.54, the Hilbert semistable locus coincides with the Chow semistable locus and it maps to the moduli stack of weakly-pseudo-stable curves. If 23.5, the Hilbert and Chow semistable loci coincide and they map to the moduli stack of pseudo-stable curves. We also analyze in detail the critical values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively.Introduction.- Singular Curves.- Combinatorial Results.- Preliminaries on GIT.- Potential Pseudo-stability Theorem.- Stabilizer Subgroups.- Behavior at the Extremes of the Basic Inequality.- A Criterion of Stability for Tails.- Elliptic Tails and Tacnodes with a Line.- A Strati_cation of the Semistable Locus.- Semistable, Polystable and Stable Points (part I).- Stability of Elliptic Tails.- Semistable, Polystable and Stable Points (part II).- Geometric Properties of the GIT Quotient.- Extra Components of the GIT Quotient.- Compacti_cations of the Universal Jacobian.- Appendix: Positivity Properties of Balanced Line Bundles.


Szczegóły: Geometric Invariant Theory for Polarized Curves - Filippo Viviani, Margarida Melo, Fabio Felici

Tytuł: Geometric Invariant Theory for Polarized Curves
Autor: Filippo Viviani, Margarida Melo, Fabio Felici
Producent: Springer Verlag
ISBN: 9783319113364
Rok produkcji: 2014
Ilość stron: 211
Oprawa: Miękka
Waga: 0.35 kg


Recenzje: Geometric Invariant Theory for Polarized Curves - Filippo Viviani, Margarida Melo, Fabio Felici

Zaloguj się
Przypomnij hasło
×
×

Geometric Invariant Theory for Polarized Curves

, ,

We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.54, the Hilbert semistable locus coincides with the Chow semistable locus and it maps to the moduli stack of weakly-pseudo-stable curves. If 23.5, the Hilbert and Chow semistable loci coincide and they map to the moduli stack of pseudo-stable curves. We also analyze in detail the critical values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively.Introduction.- Singular Curves.- Combinatorial Results.- Preliminaries on GIT.- Potential Pseudo-stability Theorem.- Stabilizer Subgroups.- Behavior at the Extremes of the Basic Inequality.- A Criterion of Stability for Tails.- Elliptic Tails and Tacnodes with a Line.- A Strati_cation of the Semistable Locus.- Semistable, Polystable and Stable Points (part I).- Stability of Elliptic Tails.- Semistable, Polystable and Stable Points (part II).- Geometric Properties of the GIT Quotient.- Extra Components of the GIT Quotient.- Compacti_cations of the Universal Jacobian.- Appendix: Positivity Properties of Balanced Line Bundles.

Powiadom o dostępności
Podaj swój e-mail a zostaniesz poinformowany jak tylko pozycja będzie dostępna.
×
Cena 153,00 PLN
Nasza cena 145,66 PLN
Oszczędzasz 4%
Wysyłka: Niedostępna
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Darmowa dostawa

Szczegóły: Geometric Invariant Theory for Polarized Curves - Filippo Viviani, Margarida Melo, Fabio Felici

Tytuł: Geometric Invariant Theory for Polarized Curves
Autor: Filippo Viviani, Margarida Melo, Fabio Felici
Producent: Springer Verlag
ISBN: 9783319113364
Rok produkcji: 2014
Ilość stron: 211
Oprawa: Miękka
Waga: 0.35 kg


Recenzje: Geometric Invariant Theory for Polarized Curves - Filippo Viviani, Margarida Melo, Fabio Felici

Zaloguj się
Przypomnij hasło
×
×

Klienci, którzy kupili oglądany produkt kupili także:


Zaloguj się
Przypomnij hasło
×
×
Dodane do koszyka
×